Студопедия — Примеры решения заданий. Пример 1. Подобрать рукавный фильтр для очистки отходящих газов клинкерообжиговой печи, если объемный расход газа V1 равен 250 000 м3/ч
Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Примеры решения заданий. Пример 1. Подобрать рукавный фильтр для очистки отходящих газов клинкерообжиговой печи, если объемный расход газа V1 равен 250 000 м3/ч






Пример 1. Подобрать рукавный фильтр для очистки отходящих газов клинкерообжиговой печи, если объемный расход газа V 1 равен
250 000 м3/ч, температура газа 250º С, плотность пыли 2600 кг/м3, концентрация пыли в газе, поступающем на очистку z 1 = 30 г/м3, медианный диаметр пыли 12 мкм, требуемая запыленность очищенного газа равна 30 мг/м3.

Решение. Исходя из технологических условий (высокой температуры отходящих газов), в качестве фильтрованного материала выбираем усовершенствованную высокотемпературную стеклоткань. Наиболее целесообразным способом регенерации для таких тканей является обратная продувка воздухом низкого давления.

1. Удельная нагрузка q, м3/(м2 мин), определяется по формуле

 

.

 

По табл. 11 принимаем q 0 = 2 м3/(м2 мин). Для фильтра с обратной продувкой С 1 = 0, 6. По графику (рис. 28) С 2 = 0, 93, в соответствии с дисперсным составом и температурой газа выбираем значения С 3 = 1 и
С 4 = 0, 7. С учетом требований к очищенному газу С 5 = 1. Тогда

 

м3/(м2∙ мин).

 

2. Гидравлическое сопротивление фильтрованной перегородки рассчитывается по формулам (55) и (56). Предварительно принимаем ориентировочно длительность цикла фильтрования t = 900 с:

Пользуясь рекомендациями, изложенными выше, принимаем:

A = 1700∙ 106 м–1; B = 16, 9∙ 109 м/кг; μ = 28∙ 10–6 Па∙ с; w ф=1, 3∙ 10–2 м/с.

Тогда

Так как гидравлическое сопротивление при выбранной длительности цикла фильтрования слишком велико, уменьшаем продолжительность цикла фильтрования до 600 с, тогда

 

Δ р 2 = 620 + 1370 = 1990 Па.

 

3. Определяем количество регенераций в течение часа:

где t р – время отключения секции на регенерацию, равное 40 с.

4. Объем газа, расходуемый на обратную продувку, определяем из условия, что скорость газа при обратной продувке такая же, как и при фильтрации, м3/ч:

 

5. Площадь фильтрации F ф, м2, определим по формуле

Исходя из требуемой площади фильтрации, а также параметров очищаемого газа, выбираем по таблице прил. 4 рукавный фильтр ФРДО-6500: фильтрующая поверхность 6500 м2, число секций 10; число рукавов 2120; диаметр рукава 130 мм, высота 7, 85 м; допустимое давление в аппарате
3 кПа; давление 0, 4–0, 6 МПа, расход сжатого воздуха на один ход пневмоцилиндра 0, 55 л; габаритные размеры 22, 3 7, 6 15, 9 м; масса 129 т.

6. Площадь фильтрации F р, выключаемая на время регенерации, м2

7.
 
 

Уточненное количество газа V p, м3/ч, расходуемого на обратную продувку в течение часа, определим из выражения:

8. Необходимая площадь фильтрации F ф, м2, при использовании рукавного фильтра ФРДО–6500 составит:

.

9. Сравним время цикла фильтрации с временем, затрачиваемым на регенерацию секций. При отключении на регенерацию по одной секции поочередно необходимо выполнение условия:

tt р(N с – 1);

600 ≥ (10 – 1);

600 ≥ 360.

Условие выполняется, следовательно, постоянно будет происходить регенерация одной секции.

 

 

Пример 2. Рассчитать зернистый фильтр-циклон за узлом выгрузки клинкера нa транспортерную ленту при объеме аспирируемого воздуха
V = 90 000 м3/ч и концентрации пыли в нем z = 8 г/м3.

Необходимо обеспечить величину концентрации пыли на выбросе в атмосферу с не более 100 мг/м3.

Решение. 1. Определяем требуемую величину эффективности пылеулавливания. Так как объем газа на входе и на выходе аппарата в соответствии с условиями задачи не изменяется, воспользуемся формулой (29), заменив массы пыли на соответствующие концентрации

%.

2. По графику (рис.34) для вычисленной степени очистки находим требуемую величину скорости фильтрации w = 18, 9 м/мин.

3. Вычисляем предварительно требуемую величину площади фильтрования, м2

4. Принимаем по табл. 13 для приведенных условий три параллельно установленных зернистых фильтра-циклона ФГЦН-30, площадь фильтрации одного фильтра F 1 = 28, 8 м2.

5. Общая площадь фильтрации установленных фильтров

F ф = 28, 8· 3 = 86, 4 м2

6. Уточняем величину фактической скорости фильтрования w ф, м/мин

7. Для фактической скорости фильтрации находим по графику фактическую величину степени очистки газа η ф = 99, 2%.

Фактическое значение степени очистки выше требуемого по расчету, т. е. выбранные аппараты обеспечивают необходимую степень очистки газа от пыли при выбранной величине удельной газовой нагрузки.

Тесты

1. В волокнистых фильтрах диффузионный механизм улавливания является преобладающим для частиц с размерами:

1) менее 0, 3 мкм; 2) 0, 3–3 мкм; 3) 1–5 мкм; 4) 5–10 мкм; 5) более 10.

2. Фильтры Петрянова работают при скоростях фильтрования:

1) 1–2 м/с; 2) 0, 1–0, 5 м/с; 3) 1–10 см/с; 4) 1–2 м/мин.

3. Для очистки газа, имеющего температуру 220º С используют рукавные фильтры с рукавами из:

1) лавсана; 2) нитрона; 3) стеклоткани; 4) хлорина; 5) хлопка.

4. Для очистки газа с температурой 150º С от щелочной пыли можно использовать фильтровальную ткань:

1) номекс; 2) полипропилен; 3) лавсан; 4) стеклоткань; 5) нитрон.

5. Рукавные фильтры типа ФРКИ работают при скоростях фильтрации:

1) 1–2 м/с; 2) 0, 2–0, 5 м/с; 3) 0, 01–0, 1 м/мин; 4) 0, 1–0, 5 м/мин;
5) 1–3 м/мин

6. В рукавных фильтрах с импульсной регенерацией не рекомендуется использовать для изготовления рукавов:

1) стеклоткань; 2) полипропилен; 3) нитрон; 4) оксалон; 5) номекс;
6) лавсан

7. Фильтры со струйной продувкой используют при:

1) высокой концентрации пыли и малых расходах газа; 2) высокой концентрации пыли и больших расходах газа; 3) низкой концентрации пыли и малых расходах газа; 4) низкой концентрации пыли и высоких расходах газа.

8. В зернистых фильтрах с неподвижной загрузкой удельная газовая нагрузка составляет:

1) 0, 5–2, 5 м3/(м2× мин); 2) 0, 5–1 м3/(м2× с); 3) 20–40 м3/(м2× мин); 4) 2, 5–20 м3/(м2× мин).

9. Основным параметром для подбора зернистых фильтров является:

1) концентрация пыли в газе; 2) объемный расход газа; 3) дисперсный состав пыли; 4) требуемая степень очистки.

10. Для регенерации загрузки в зернистых фильтрах не используется:

1) импульсная продувка; 2) обратная продувка; 3) ворошение;
4) встряхивание.

 

Вопросы для повторения

 

1. Каковы основные механизмы улавливания частиц при фильтровании?

2. В чем состоит механизм инерционного захвата частиц?

3. Что такое термофорез?

4. Для каких целей используются волокнистые фильтры?

5. Что представляют собой фильтры Петрянова?

6. Для чего применяются воздушные фильтры?

7. Как устроен и работает масляный фильтр?

8. Чем объясняется высокая степень очистки рукавных фильтров в запыленном состоянии?

9. Каковы оптимальные значения удельной газовой нагрузки в рукавных фильтрах?

10. От чего зависит гидравлическое сопротивление рукавного фильтра?

11. Какие методы регенерации используются в рукавных фильтрах?

12. От чего зависит продолжительность цикла фильтрования?

13. Какими факторами определяется выбор фильтровальных тканей при проектировании фильтров?

14. Как подбираются рукавные фильтры?

15. Каковы основные достоинства и недостатки рукавных фильтров?

16. Как классифицируются зернистые фильтры?

17. Как устроены фильтры с неподвижным зернистым слоем?

18. Какие материалы могут использоваться в зернистых фильтрах?

19. При каких скоростях фильтрации работают фильтры с неподвижными слоями загрузки?

20. Как работают зернистые фильтры с движущейся загрузкой?

21. Какие способы регенерации используются в зернистых фильтрах?

22. Как работает фильтр-циклон?

23. Каковы основные достоинства и недостатки зернистых фильтров?







Дата добавления: 2014-12-06; просмотров: 1007. Нарушение авторских прав; Мы поможем в написании вашей работы!



Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...

Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...

Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...

Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...

Травматическая окклюзия и ее клинические признаки При пародонтите и парадонтозе резистентность тканей пародонта падает...

Подкожное введение сывороток по методу Безредки. С целью предупреждения развития анафилактического шока и других аллергических реак­ций при введении иммунных сывороток используют метод Безредки для определения реакции больного на введение сыворотки...

Принципы и методы управления в таможенных органах Под принципами управления понимаются идеи, правила, основные положения и нормы поведения, которыми руководствуются общие, частные и организационно-технологические принципы...

Измерение следующих дефектов: ползун, выщербина, неравномерный прокат, равномерный прокат, кольцевая выработка, откол обода колеса, тонкий гребень, протёртость средней части оси Величину проката определяют с помощью вертикального движка 2 сухаря 3 шаблона 1 по кругу катания...

Неисправности автосцепки, с которыми запрещается постановка вагонов в поезд. Причины саморасцепов ЗАПРЕЩАЕТСЯ: постановка в поезда и следование в них вагонов, у которых автосцепное устройство имеет хотя бы одну из следующих неисправностей: - трещину в корпусе автосцепки, излом деталей механизма...

Понятие метода в психологии. Классификация методов психологии и их характеристика Метод – это путь, способ познания, посредством которого познается предмет науки (С...

Studopedia.info - Студопедия - 2014-2024 год . (0.008 сек.) русская версия | украинская версия