Студопедия — Закон руху вихідної ланки
Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Закон руху вихідної ланки






Під законом руху вихідної ланки кулачкового механізму розуміють залежність переміщення, швидкості чи її прискорення від часу. Закони руху вихідних ланок задаються, переважно, або аналітично у вигляді рівнянь, або графічно - у вигляді відповідних графіків. Оскільки рух кулачка в більшості випадків, що зустрічаються на практиці, відповідає рівномірному обертанню, то зручніше користуватися графіками, які являють собою залежність переміщення, аналога швидкості, чи аналога прискорення від кута повороту кулачка.

Закон руху вихідної ланки визначається профілем кулачка і є основною характеристикою механізму.

У практиці проектування кулачкових механізмів найбільше поширення отримали відносно прості, типові закони руху, наприклад, зображені на рис. 6.3 (для фази віддалення штовхача): а - лінійний; б - параболічний; в - косинусоїдальний; г - синусоїдальний; д, е - описані поліномами.

Теоретично, кулачкові механізми можуть здійснювати будь-які закони руху. Але на практиці користуються лише тими, які забезпечують просту технологію обробки профілю кулачка та є сприятливі з точки зору динаміки роботи механізму. Від закону руху залежать динамічні та вібраційні властивості кулачкового механізму; він повинен бути таким, щоб зусилля, які виникають при русі, не впливали на точність відтворення передатної функції та не позначались на довговічності механізму. Розрізняють закони руху вихідної ланки кулачкових механізмів трьох видів:

- з жорсткими ударами. Прикладом є лінійний закон (постійної швидкості, рис. 6.3, а). Швидкість руху штовхача на фазі віддалення постійна (прискорення дорівнює нулю), але на початку та в кінці фази швидкість має розрив. При миттєвій зміні швидкості штовхача прискорення, а отже, й сила інерції ланки, теоретично прямує до нескінченості, що є причиною жорстких ударів, і як наслідок - швидке спрацювання механізму. Такий закон допустимий лише в тихохідних механізмах при незначній масі штовхача (у випадку коли необхідно забезпечити постійну швидкість руху вихідної ланки);

- з м’якими ударами. До цієї групи відносяться закони, при яких швидкість змінюється неперервно, а графік прискорення має точки розриву. Це характерно для параболічного, косинусоїдального законів руху (рис. 6.3, б, в, д). У точках розриву кривої прискорення сили інерції раптово змінюються на кінцеву величину, що викликає так званий м’який удар. М’який удар менш небезпечний, ніж жорсткий удар, проте робота механізму супроводжується вібраціями, шумом та підвищеним спрацюванням. Цей закон використовують при помірних швидкостях;

- без ударів. До безударних відносяться закони, при яких прискорення є неперервною функцією (рис. 6.3, г, е). Це закони, задані діаграмою прискорення, окресленою за синусоїдою, трикутником, трапецією та інші. При плавних кривих зміни прискорення удари теоретично відсутні (якщо похибки виготовлення профілів незначні). Такі закони рекомендують використовувати у швидкохідних механізмах. Недоліком їх є повільне наростання переміщення веденої ланки.

Найбільше використання мають кулачки, які забезпечують плавну зміну прискорення штовхача.

Зауважимо, що при проектуванні кулачкових механізмів, як слідує з наведеного, доцільно виходити з графіка прискорень (за ним можна зробити висновок про удари, шум, вібрації кулачкових механізмів, у той час, як за графіками переміщень важко судити про закон руху, оскільки криві переміщення зовні мало відрізняються). Графіки швидкості та прискорення в таких випадках знаходяться методом графічного інтегрування.

Наголосимо, що не існує єдиного універсального критерію, який би враховував повний комплекс факторів, пов’язаних з вибором закону руху вихідної ланки кулачкового механізму. При оцінці ефективності профілю кулачка встановлюють комплекс заданих умов і обмежень, враховуючи їх вагомість.

 

Рис. 6.3

 







Дата добавления: 2014-12-06; просмотров: 1742. Нарушение авторских прав; Мы поможем в написании вашей работы!



Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...

Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...

Логические цифровые микросхемы Более сложные элементы цифровой схемотехники (триггеры, мультиплексоры, декодеры и т.д.) не имеют...

Принципы, критерии и методы оценки и аттестации персонала   Аттестация персонала является одной их важнейших функций управления персоналом...

Пункты решения командира взвода на организацию боя. уяснение полученной задачи; оценка обстановки; принятие решения; проведение рекогносцировки; отдача боевого приказа; организация взаимодействия...

Что такое пропорции? Это соотношение частей целого между собой. Что может являться частями в образе или в луке...

Выработка навыка зеркального письма (динамический стереотип) Цель работы: Проследить особенности образования любого навыка (динамического стереотипа) на примере выработки навыка зеркального письма...

Словарная работа в детском саду Словарная работа в детском саду — это планомерное расширение активного словаря детей за счет незнакомых или трудных слов, которое идет одновременно с ознакомлением с окружающей действительностью, воспитанием правильного отношения к окружающему...

Правила наложения мягкой бинтовой повязки 1. Во время наложения повязки больному (раненому) следует придать удобное положение: он должен удобно сидеть или лежать...

Studopedia.info - Студопедия - 2014-2024 год . (0.009 сек.) русская версия | украинская версия