Студопедия — СВОЙСТВА МЕРЫ НЕЧЕТКОСТИ
Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

СВОЙСТВА МЕРЫ НЕЧЕТКОСТИ






Мера нечеткости была предложена как функция для решения общей задачи

H: P ® [0, ¥ ],

где H - шенноновская энтропия,

P – множество всех распределений вероятностей, которые могут быть определены на конечных множествах альтернативных (взаимно-исключающих) выходах:

P = 0 для детерминированного случая;

иначе P ® ¥; подобно множеству точек отрезка [0, 1], любая из которых может быть принята за разделительную для выделения отрезка Pi.

P1 P2 Pi Pn

       
 
 
 
   
 


[0; 1]

Сравнение по нечеткости множеств альтернатив разбиения универсума [0, 1] на части целого {[Pi]} определяется в общем виде функцией H:

.

Это единственная известная функция, удовлетворяющая системе из пяти аксиом:

К(a) = (a1; a2; a3; a4; a5)H,

где

a1H - симметричность: нечеткость инвариантна отно­сительно перестановки вероятностей;

a2H - расширяемость: нечеткость не меняется при до­бавлении к рассматриваемому множеству выходов с нулевой веро­ятностью;

a3H - квазиаддитивность: нечеткость совместного рас­пределения вероятностей не более суммы нечеткостей соответст­вующих безусловных распределений его компонентов;

a4H - аддитивность: для распределения вероятностей любых 2-х независимых множеств выходов нечеткость совмест­ного распределения вероятностей равна сумме нечеткостей от­дельных распределений вероятностей;

a5H - непрерывность: нечеткость это непрерывная функция на всех своих аргументах.

Функция f(х) определяет нечеткость (в частности, веро­ятность) для конечного множества альтернатив х Î X.

Коэффициенты " a" и " b" в H являются конституэнтами: значение " а" используется на практике в качестве нормирую­щего коэффициента, значение " b" (основание логарифма) опреде­ляет единицу измерения при передаче информации (бит... дит...).

Нормализующее свойство меры нечеткости иллюстри­руется нечеткостью 2-х равновероятных исходов, когда H = 1.

Чтобы нормализовать для произвольного множества исходов при наихудшем равновероятном случае альтернатив значение H нормируют по величине

| ld | X | |, где | X | - мощность (число) альтернатив;

Значения нормы сведены в таблицу.

 

| X |                    
ld | X |     1.58   2.32 2.58 2.8   3.16 3.32

Упражнения

1. Система имеет два взаимоисключающих выхода на множестве альтернатив {0; 1}. Определить норму.

2. Повторить для X = {3, 4, 5}.

3. Определить энтропию и нормализовать ее для следующих механизмов случайного выбора (МСВ).

 

а.

МСВ X1 X2
МСВ-R1 0.1 0.9
МСВ-R2 0.3 0.7
МСВ-R3 0.5 0.5

 

б.

X          
Pl1 0.6 0.3 0.09 0.01 -
Pl2 0.37 0.37 0.19 0.06 0.01

 

в.

T              
Pm 0.01 0.06 0.24 0.38 0.24 0.06 0.01

 

4. В приложении 5 приведены вероятности появления букв в русском языке, а также один из возможных вариантов МСВ для имитационного моделирования процесса появления букв. “Переведите” на русский язык фрагмент таблицы случайных чисел (см. П.4), предварительно группируя числа в виде четырехзначных последовательностей.

5. Определите нечеткость преобразования последовательности символов “Основы теории систем “, используя данные приложения 6.

6. В приложении 6 приведена топология пишущей машинки с разметкой по частоте отдельных символов (см.П5).

а. Определите систему двухбуквенных сочетаний, используя отношение соседства на клавиатуре.

б. Оцените соответствие найденных соседств фонетическому строю русских слов. Приведите конкретные примеры в подтверждение типовых буквосочетаний и оцените удобство их печатания в данной топологии расположения символов: при печатании одним пальцем и при многопальцевой системе.

7. В приложении 7 приведена топология клавиатуры персо­нального компьютера (ПК). Определите системы соответствий между топологиями пишущей машинки и ПК. Какое лингвистическое и программно-математическое обеспечение потребуется для решения подобной задачи?

5. ДИНАМИЧЕСКИЙ УРОВЕНЬ ОПИСАНИЯ СИСТЕМ У7

Время и пространство неразрывны, как единая форма бы­тия.

Время - это форма последовательности смены явлений и состояний материи, оно характеризует длительности их бытия. Время - это измерение длительности процессов. Своеобразная то­пологическая мера со свойством однонаправленности. С поняти­ем времени связаны понятия прошлое, настоящее, будущее, свя­зана динамика процессов гибели и восстановления, адаптации, эволюции и т.д.

По свойствам время и пространство имеют общие черты: неотделимость от материи, неразрывность от движения, количест­венная и качественная бесконечность.

Универсальные свойства времени: длительность, неповторяемость, необратимость.

Системы измерения времени базируются на системах отсче­та: суточное, годовое, звездное, солнечное, местное, всемирное (по Гринвичу), поясное (декретное), эфемеридное.

Эфемеридное время - равномерно текущее время: эфемеридная секунда равна (31.556.925, 9747)-1 доля тропического года по данным за 1900 год, январь 0, в 12 часов.

В науке на теоретико-множественном уровне абстрагирова­ния время определяется как однонаправленное множество T с элементами tÎ T, с дискретно-задаваемым или непрерывным от­счетом по шкале чисел N. Точки начала и конца отсчета времени определяются наблюдателем.

Системы, описание которых базируется на множестве Т, определяются как динамические системы, в отличие от статиче­ских, т.е. не меняющих свои состояния в зависимости от времени.







Дата добавления: 2014-12-06; просмотров: 617. Нарушение авторских прав; Мы поможем в написании вашей работы!



Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...

Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...

Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...

Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...

Реформы П.А.Столыпина Сегодня уже никто не сомневается в том, что экономическая политика П...

Виды нарушений опорно-двигательного аппарата у детей В общеупотребительном значении нарушение опорно-двигательного аппарата (ОДА) идентифицируется с нарушениями двигательных функций и определенными органическими поражениями (дефектами)...

Особенности массовой коммуникации Развитие средств связи и информации привело к возникновению явления массовой коммуникации...

Понятие и структура педагогической техники Педагогическая техника представляет собой важнейший инструмент педагогической технологии, поскольку обеспечивает учителю и воспитателю возможность добиться гармонии между содержанием профессиональной деятельности и ее внешним проявлением...

Репродуктивное здоровье, как составляющая часть здоровья человека и общества   Репродуктивное здоровье – это состояние полного физического, умственного и социального благополучия при отсутствии заболеваний репродуктивной системы на всех этапах жизни человека...

Случайной величины Плотностью распределения вероятностей непрерывной случайной величины Х называют функцию f(x) – первую производную от функции распределения F(x): Понятие плотность распределения вероятностей случайной величины Х для дискретной величины неприменима...

Studopedia.info - Студопедия - 2014-2024 год . (0.011 сек.) русская версия | украинская версия