Студопедия Главная Случайная страница Задать вопрос

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Числовые характеристики системы двух случайных величин





Для описания системы двух случайных величин, кроме математических ожиданий и дисперсий составляющих, используют и другие характеристики; к их числу относятся корреляционный момент и коэффициент корреляции [3].

Корреляционным моментом случайных величин и называют математическое ожидание произведения отклонений этих величин:

.

Для вычисления корреляционного момента дискретных величин используют формулу: ,

а для непрерывных величин формулу

.

Корреляционный момент служит для характеристики связи между величинами и . Как будет показано ниже, корреляционный момент равен нулю, если и независимы; следовательно, если корреляционный момент не равен нулю, то и – зависимые случайные величины.

Замечание 1. Учитывая, что отклонения есть центрированные случайные величины, корреляционный момент можно определить как математическое ожидание произведения центрированных случайных величин: .

Замечание 2. Легко убедиться, что корреляционный момент можно записать в виде .

Теорема 1. Корреляционный момент двух независимых случайных величин и равен нулю.

Коэффициентом корреляции случайных величин и называют отношение корреляционного момента к произведению средних квадратических отклонений этих величин: .

Так как размерность равна произведению размерностей величин и , имеет размерность величины , имеет размерность величины , то – безразмерная величина. Таким образом, величина коэффициента корреляции не зависит от выбора единиц измерения случайных величин. В этом состоит преимущество коэффициента корреляции перед корреляционным моментом.

Теорема 2. Абсолютная величина корреляционного момента двух случайных величин и не превышает среднего геометрического их дисперсий:

.

Теорема 3. Абсолютная величина коэффициента корреляции не превышает единицы: .






Дата добавления: 2014-12-06; просмотров: 218. Нарушение авторских прав

Studopedia.info - Студопедия - 2014-2017 год . (0.014 сек.) русская версия | украинская версия