Студопедия — Амплитудные детекторы
Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Амплитудные детекторы






Детекторы служат для выделения сигнала модулирующей частоты из принятого радиочастотного модулированного колебания.

Амплитудным детектором называется устройство, в котором осуществляется преобразование высокочастотного амплитудно-модулированного колебания в низкочастотное колебание, соответствующее закону изменения амплитуды ВЧ колебания.

Из определения следует, что на вход детектора подается колебание, содержащее только высокочастотные составляющие. На выходе детектора выделяется напряжение низкой частоты. Таким образом, при детектировании происходит трансформация спектра. Поэтому амплитудное детектирование может осуществляться как в нелинейных, так и в линейных цепях с периодически изменяющимися параметрами. На практике преимущественно используются нелинейные амплитудные детекторы. Амплитудные детекторы, построенные на линейных элементах с переменными параметрами, называются синхронными детекторами; они применяются значительно реже.

Нелинейный амплитудный детектор является типичным нелинейным устройством и состоит из нелинейного элемента и фильтра. В качестве нелинейного элемента могут быть использованы диод, триод, пентод или транзисторы, а в качестве фильтра — параллельная цепочка RC (рис. 3.а). В простейшем случае (тональная модуляция) спектры и временные диаграммы на входе и выходе АМ-детектора имеют вид, показанный на рис. 3.б.

Анализ работы амплитудного детектора начнем с определения его основных характеристик.

Рис. 3.

Первой основной характеристикой амплитудного детектора является его детекторная характеристика—доказывающая, как изменяется выходной ток детектора при изменении амплитуды входного высокочастотного напряжения.

Учитывая, что в реальных радиоэлектронных устройствах частота модулирующего напряжения значительно меньше модулируемого (F ≤ fo), изменение амплитуды входного высокочастотного напряжения детектора можно рассматривать как очень медленное, в пределе полагая, что амплитуда высокочастотного сигнала постоянна (Uвх = Uo cosω оt). Тогда результатом детектирования будет постоянная составляющая выходного тока детектора I. Однако в общем случае на выходе детектора будет некоторый постоянный ток Iо и при отсутствии входного сигнала. Поэтому полезным результатом детектирования будет ток:

DI =I – I0

а детекторной характеристикой будет зависимость

DI = f (U0) (13)

Типичная детекторная характеристика представлена на рис. 4.а.

По детекторной характеристике легко оценить качество детектирования. Рабочим участком детекторной характеристики, естественно, является линейный участок, где изменение выходного тока детектора в точности соответствует изменению амплитуды входного ВЧ напряжения (огибающей). Чем больше линейный участок детекторной характеристики, тем большие изменения М возможны, т. е. тем лучше схема детектора.

Второй основной характеристикой амплитудного детектора является его коэффициент передачи — характеристика, аналогичная коэффициенту усиления усилителя.

Правда, в детекторе происходит трансформация спектра и, конечно, полной аналогии провести нельзя. Но, если учесть, что высокочастотное модулированное колебание создается для передачи низкочастотного сообщения и что это сообщение содержится в форме огибающей высокочастотного сигнала, коэффициент передачи амплитудного детектора можно определить в виде отношения амплитуды низкочастотного колебания на выходе детектора к амплитуде огибающей высокочастотного напряжения на его входе:

Kd = UW/ Um = UW/MU0. (14)

Рис.4.

Третьей основной характеристикой детектора является его входное сопротивление ZBX, определяющее влияние детектора на предыдущее устройство.

Обычно напряжение поступает на амплитудный детектор с параллельного колебательного контура, настроенного на несущую частоту ω о. Желательно, чтобы подключение детектора мало меняло параметры этого контура.

Влияние детектора на контур можно определить (так же, как и для входного сопротивления усилительного каскада) величиной входного тока детектора. Однако необходимо учитывать не полный входной ток детектора, а только ту его частотную составляющую, которая создает падение напряжения на контуре.

Так как детектор обязательно содержит нелинейный элемент, его входной ток i можно выразить следующим образом:

iвх = I-- +Iw cos (w0t + j1) + I2w cos (w0t + j2) +....

Учитывая избирательные свойства контура, входное сопротивление детектора может быть определено как

ZВХ = U0/Iw

В большинстве случаев реактивное сопротивление носит емкостный характер, причем входная емкость обычно невелика, и ее влияние можно учесть при начальной регулировке контура. Поэтому влияние схемы амплитудного детектора на предыдущее устройство сводится к учету входного сопротивления детектора:

RВХ = U0/Iw

Четвертой основной характеристикой амплитудного детектора является его частотная характеристика — зависимость коэффициента передачи детектора от частоты модулирующего напряжения: Kd= ψ (F) (рис. 4.б).

Наконец, пятой основной характеристикой амплитудного детектора является величина нелинейных искажений.

Как неоднократно отмечалось, детектор является нелинейным устройством. Поэтому при детектировании сложного амплитудно-модулированного сигнала на его выходе наряду с частотой F появляются гармонические составляющие с частотой 2F, 3F и т. д. Такие искажения, как известно, называются нелинейными, а их величина оценивается коэффициентом нелинейных искажений:

k1 = . (15)

В зависимости от типа применяемого нелинейного элемента и места включения нагрузки различают следующие схемы амплитудных детекторов: диодные (на вакуумных и полупроводниковых диодах); сеточные, анодные и катодные (на триодах и пентодах); базовые, коллекторные и эмиттерные (на транзисторах). Выбор той или иной схемы детектора связан с требованиями конкретной задачи и свойствами каждой из перечисленных схем.







Дата добавления: 2014-12-06; просмотров: 2140. Нарушение авторских прав; Мы поможем в написании вашей работы!



Шрифт зодчего Шрифт зодчего состоит из прописных (заглавных), строчных букв и цифр...

Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...

Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...

Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...

Ситуация 26. ПРОВЕРЕНО МИНЗДРАВОМ   Станислав Свердлов закончил российско-американский факультет менеджмента Томского государственного университета...

Различия в философии античности, средневековья и Возрождения ♦Венцом античной философии было: Единое Благо, Мировой Ум, Мировая Душа, Космос...

Характерные черты немецкой классической философии 1. Особое понимание роли философии в истории человечества, в развитии мировой культуры. Классические немецкие философы полагали, что философия призвана быть критической совестью культуры, «душой» культуры. 2. Исследовались не только человеческая...

ОСНОВНЫЕ ТИПЫ МОЗГА ПОЗВОНОЧНЫХ Ихтиопсидный тип мозга характерен для низших позвоночных - рыб и амфибий...

Принципы, критерии и методы оценки и аттестации персонала   Аттестация персонала является одной их важнейших функций управления персоналом...

Пункты решения командира взвода на организацию боя. уяснение полученной задачи; оценка обстановки; принятие решения; проведение рекогносцировки; отдача боевого приказа; организация взаимодействия...

Studopedia.info - Студопедия - 2014-2024 год . (0.011 сек.) русская версия | украинская версия