Студопедия — Устройство и принцип действия триодов
Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Устройство и принцип действия триодов






Для того чтобы увеличить возможность управления потоком электронов, эмиттированных катодом, тем самым расширить область применения электронных ламп, были созданы трёхэлектродные лампы – триоды. В триоде между анодом А и катодом К помещён ещё один электрод – управляющая сетка УС. Сетка конструктивно представляет собой либо спираль, либо сетку из переплетённых проводов и выполняется из вольфрамового, никелевого или молибденового провода. Условное изображение триода в схеме дано на рисунке. Как и в диоде, в триоде имеются цепь накала для разогрева катода и цепь анода для получения ускоряющего поля для электронов. Главное отличие триода от диода в том, что в триоде имеется дополнительная возможность управления анодным током путём изменения напряжения между сеткой и катодом.

 

 

А

С

       
 
 
   


К

н н

 

Подадим постоянное напряжение между анодом и катодом UА плюсом на анод и будем менять напряжение между управляющей сеткой и катодом UС по величине и по знаку. При подаче отрицательного напряжения на сетку для электронов пространственного заряда создаётся тормозящее поле, поэтому в каждой точке между сеткой и катодом на электроны действует поле, образовавшееся в результате взаимодействия между ускоряющим полем анода и тормозящим полем сетки. При определённом отрицательном напряжении UС анодный ток становится равным нулю, тормозящее поле создаётся не только у витков сетки, но и в промежутках между ними, препятствуя пролёту электронов от катода к аноду. При этом пространственный заряд у катода имеет наибольшую плотность. Будем уменьшать отрицательное напряжение на сетке, результирующее поле между витками сетки меняется и становится ускоряющим для электронов. Чем меньше отрицательное напряжение на сетке, тем сильнее действует ускоряющее поле и тем больше становится ток IА. При подаче положительного напряжения +UC электроны получают ускорение не только за счёт поля анода, но также и за счёт поля сетки. Анодный ток становится ещё больше. Однако часть электронов притягивается непосредственно к виткам сетки и образует ток сетки IС. Таким образом, при положительном напряжении на сетке общий катодный ток IК разветвляется на два тока: анодный IА и сеточный IС.

 

UД = UC + DUА, где UД – действующее напряжение, D – проницаемость триода.

D= CАК / CСК, где CАК – ёмкость анод-катод, CСК – ёмкость сетка-катод.


Статические параметры триода

Крутизна характеристики S. При UА = const S= Δ IА /Δ UC. Крутизна показывает, на сколько миллиампер изменится анодный ток при изменении напряжения на сетке на 1 В при неизменном UА. Конструктивно S зависит от расстояния между катодом и управляющей сеткой: чем меньше это расстояние, тем сильнее влияние поля сетки на электроны пространственного заряда у катода, тем больше S.

Внутреннее сопротивление Ri. При UC = const Ri = Δ UА/Δ IА. Ri характеризует влияние поля анода на ток IА.

Входное сопротивление RВХ . При UА = const RВХ = Δ UC /Δ IC. Входное сопротивление триода зависит от режима работы: без сеточных токов или с сеточными токами.

Коэффициент усиления μ;.. При IА= const μ = - Δ UА / Δ UC; μ показывает, во сколько раз влияние поля сетки на анодный ток сильнее влияния поля анода.

D

Таким образом, чем гуще намотана сетка и меньше влияние электрического поля анода на пространственный заряд у катода, тем больше μ.

К предельным параметрам триода относятся: допустимая мощность, рассеиваемая анодом, допустимое напряжение UА max, допустимый анодный ток. Сущность этих предельных параметров та же, что и в ламповом диоде.


Тетроды

Для уменьшения проходной ёмкости между анодом и управляющей сеткой помещается ещё одна сетка. Дополнительная сетка, благодаря своей роли, получила название экранирующей. Тетрод обладает большим коэффициентом усиления μ, т.к. управляющая сетка в тетроде редкая, а на экранирующую сетку подаётся положительное напряжение +UС2 . При большой проницаемости управляющей сетки и значительном напряжении UС2 этот триод запирается при сравнительно большом отрицательном напряжении на управляющей сетке. В отличие от триода анод в тетроде закрыт от пространственного заряда двумя сетками, поэтому влияние поля анода на электроны пространственного заряда гораздо меньше, чем поля управляющей сетки, и поэтому коэффициент усиления резко возрастает по сравнению с триодом.

А

С2 С1

К

       
   
 
 


Достоинства:

- резкое уменьшение проходной ёмкости и, как следствие, возможность работы на высоких частотах;

- большой коэффициент усиления.

Основной недостаток тетрода – наличие динатронного эффекта (Изменение тока в цепях электродов лампы за счёт вторичной эмиссии называется динатронным эффектом.). Появление отрицательного сопротивления вследствие динатронного эффекта ограничивает возможность работы тетрода при малых анодных напряжениях и является серьёзным препятствием к применению тетродов в схемах усиления электрических сигналов. Отсюда возникла необходимость в усовершенствовании тетрода, т.е. при сохранении всех его достоинств потребовалось устранить динатронный эффект. Решение этой проблемы было найдено в двух типах ламп: лучевом тетроде и пентоде.







Дата добавления: 2014-12-06; просмотров: 865. Нарушение авторских прав; Мы поможем в написании вашей работы!



Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...

Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...

Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...

Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

Различие эмпиризма и рационализма Родоначальником эмпиризма стал английский философ Ф. Бэкон. Основной тезис эмпиризма гласит: в разуме нет ничего такого...

Индекс гингивита (PMA) (Schour, Massler, 1948) Для оценки тяжести гингивита (а в последующем и ре­гистрации динамики процесса) используют папиллярно-маргинально-альвеолярный индекс (РМА)...

Методика исследования периферических лимфатических узлов. Исследование периферических лимфатических узлов производится с помощью осмотра и пальпации...

ТРАНСПОРТНАЯ ИММОБИЛИЗАЦИЯ   Под транспортной иммобилизацией понимают мероприятия, направленные на обеспечение покоя в поврежденном участке тела и близлежащих к нему суставах на период перевозки пострадавшего в лечебное учреждение...

Кишечный шов (Ламбера, Альберта, Шмидена, Матешука) Кишечный шов– это способ соединения кишечной стенки. В основе кишечного шва лежит принцип футлярного строения кишечной стенки...

Принципы резекции желудка по типу Бильрот 1, Бильрот 2; операция Гофмейстера-Финстерера. Гастрэктомия Резекция желудка – удаление части желудка: а) дистальная – удаляют 2/3 желудка б) проксимальная – удаляют 95% желудка. Показания...

Studopedia.info - Студопедия - 2014-2024 год . (0.011 сек.) русская версия | украинская версия