Студопедия — Нейронні мережі
Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Нейронні мережі






Штучні нейронні мережі (Artificial Intelligence Systems - АІS) – математичні моделі, а також їх програмна та апаратна реалізація, побудовані за принципом функціонування біологічних нейронних мереж – мереж нервових клітин живого організму.

Нейронні мережі відносяться до класу нелінійних адаптивних систем з архітектурою, що умовно імітує нервову тканину з нейронів. Математична модель нейрона являє собою деякий універсальний нелінійний елемент із можливістю широкої зміни і налаштування його характеристик.

Штучний j -й нейрон задається сукупністю своїх входів (дендрити) – хij, ваговими коефіцієнтами входів (синапси) – wij, функцією стану (сома) – sj та функцією активації (аксони) – fj ().

Функція стану sj визначає стан нейрона залежно від його входів та ваг входів (рідше – ще й залежно від попередніх станів нейрона) (6.1):

 

, (6.1)

 

де n (j) – кількість входів j -го нейрона.

Функцією стану sj задається деяке порогове значення . Якщо s j > , вихідний сигнал нейрона yj = 1, в іншому випадку уj = 0. Таким чином, нейрон може перебувати лише у двох станах: активному (коли вихідний сигнал yj = 1) або пасивному (уj = 0).

Функція активації y = f (s) визначає вихідний сигнал нейрона як функцію його стану s. Найбільш поширеними функціями активації є ступенева та лінійна порогові, сигмоїдна, лінійна і гаусівська. Лінійні нейромережі застосовують нейрони з лінійною функцією активації. Нелінійні застосовують нелінійну функцію активації, наприклад, порогову або сигмоїдну.

Узагальнену структурну схему j -го нейрона показано на рис. 6.1.

 

Рисунок 6.1 – Загальна структурна схема j -го нейрона

 

В одній з найбільш розповсюджених нейромережевих архитектур - багатошаровому персептроні зі зворотним поширенням похибки - моделюється робота нейронів у складі ієрархічної мережі, де кожен нейрон прошарку з'єднаний своїми виходами з входами нейронів наступного прошарку (рис. 6.2). На нейрони вхідного прошарку подаються значення вхідних параметрів, на основі яких виробляються обчислення, необхідні для прийняття рішень, прогнозування розвитку ситуації і т.п. Ці значення розглядаються як сигнали, що передаються в наступний прошарок. Величина послаблення або підсилення сигналу залежить від числових значень (ваг), приписуваних міжнейронним зв'язкам. У результаті цього на виході нейрона вихідного прошарку продукується значення, що розглядається як відповідь, реакція всієї мережі на введені значення вхідних параметрів. Для того щоб мережу можна було застосовувати надалі, її треба " навчити" на прикладах, для яких відомо і значення вхідних параметрів, і правильні відповіді на них.

Рисунок 6.2 – Багатошаровий персептрон

 

Процес " навчання" полягає в підборі ваг міжнейронних зв'язків і модифікації внутрішніх параметрів передатної функції нейронів. Для кожного сполучення навчальних даних на виході мережі вихідні значення порівнюються з відомим результатом. Якщо вони розрізняються, то обчислюється похибка, що враховується при обробці у вузлах мережі. Зазначені кроки повторюються, поки не виконається умова останову, наприклад необхідна похибка не буде перевищувати заданої величини.

Отже, нейронні мережі уявляють собою сукупність зв'язаних між собою вузлів, що отримують вхідні дані, здійснюють їх обробку і генерують на виході результат. Між вузлами видимих вхідного і вихідного прошарків може знаходитися певне число прихованих прошарків обробки. Нейронні мережі реалізують непрозорий процес. Це означає, що побудована модель, як правило, не має чіткої інтерпретації. Багато пакетів, що реалізують алгоритми нейронних мереж, застосовуються не лише в сфері обробки комерційної інформації, без них важко обійтися при рішенні більш загальних задач розпізнавання образів, скажемо розшифровки рукописного тексту чи інтерпретації кардіограм.

Апаратні або програмні реалізації алгоритмів нейромереж називаються нейрокомп'ютером.

· Нейрокомп'ютери дають стандартний спосіб рішення багатьох нестандартних задач. І неважливо, що спеціалізована машина краще вирішує один клас задач. Важливіше, що один нейрокомп'ютер вирішить і цю задачу, і другу, і третю і не треба щораз проектувати спеціалізовану ЕОМ, нейрокомп'ютер зробить все сам і майже не гірше.

· Замість програмування навчання. Нейрокомп'ютер вчиться, потрібно лише формувати навчальні множини. Праця програміста заміняється новою працею вчителя. Краще це чи гірше? Ні те, ні інше. Програміст наказує машині всі деталі роботи, вчитель створює " навчальне середовище", до якого пристосовується нейрокомп'ютер. З'являються нові можливості для роботи.

· Нейрокомп'ютери ефективні там, де потрібний аналог людської інтуїції, зокрема, для розпізнавання образів, читання рукописних текстів, підготовки аналітичних прогнозів, перекладу з однієї природної мови на іншу і т.п. Саме для таких задач звичайно важко скласти явний алгоритм.

· Нейронні мережі дозволяють створити ефективне програмне та математичне забезпечення для комп'ютерів з високим ступенем розпаралелювання обробки.

· Нейрокомп'ютери " демократичні", вони також дружні, як текстові процесори, тому з ними може працювати будь-який, навіть зовсім недосвідчений користувач.







Дата добавления: 2014-12-06; просмотров: 1080. Нарушение авторских прав; Мы поможем в написании вашей работы!



Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...

Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...

Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...

Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

Меры безопасности при обращении с оружием и боеприпасами 64. Получение (сдача) оружия и боеприпасов для проведения стрельб осуществляется в установленном порядке[1]. 65. Безопасность при проведении стрельб обеспечивается...

Весы настольные циферблатные Весы настольные циферблатные РН-10Ц13 (рис.3.1) выпускаются с наибольшими пределами взвешивания 2...

Хронометражно-табличная методика определения суточного расхода энергии студента Цель: познакомиться с хронометражно-табличным методом опреде­ления суточного расхода энергии...

Растягивание костей и хрящей. Данные способы применимы в случае закрытых зон роста. Врачи-хирурги выяснили...

ФАКТОРЫ, ВЛИЯЮЩИЕ НА ИЗНОС ДЕТАЛЕЙ, И МЕТОДЫ СНИЖЕНИИ СКОРОСТИ ИЗНАШИВАНИЯ Кроме названных причин разрушений и износов, знание которых можно использовать в системе технического обслуживания и ремонта машин для повышения их долговечности, немаловажное значение имеют знания о причинах разрушения деталей в результате старения...

Различие эмпиризма и рационализма Родоначальником эмпиризма стал английский философ Ф. Бэкон. Основной тезис эмпиризма гласит: в разуме нет ничего такого...

Studopedia.info - Студопедия - 2014-2024 год . (0.013 сек.) русская версия | украинская версия