Студопедия — Обеспечение информационный процессов
Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Обеспечение информационный процессов






 

Для того, чтобы СПИ могла нормально функцио­нировать, протекающие в ней информационные про­цессы должны быть соответствующим образом обес­печены. Поэтому в состав СПИ входит ряд подсистем, обеспечивающих протекание информационных про­цессов. К их числу относятся подсистемы энергообес­печения, хранения и регистрации информации, интен­ций личности.

Подсистема энергообеспечения информационных процессов обеспечивает выполнение трех важнейших условий:

■ адаптивная подстройка текущего диапазона чувствитель­ности входящих в СПИ структур к изменениям парамет­ров внешней стимуляции;

■ общая мобилизация ресурсов СПИ при неожиданном по­ступлении значимых сигналов;

■ распределение этих ресурсов между параллельно проте­кающими процессами с тем, чтобы обеспечить преиму­щественную переработку той информации, которая в наибольшей степени способствует достижению стоящих перед субъектом целей.

 

Работа подсистемы обеспечивается механизмами активации, селекции и эмоций. Механизмы активации осуществляют регулирование возбудимости (тонуса) нейронов мозга, устанавливая тем самым требуемую предрасположенность их к выполнению той или иной функции. Этим определяется общее функциональное состояние мозга. Различают тоническую (длительную) и фазическую (кратковременную) активацию. Тоничес­кая активация обеспечивает выполнение первого из указанных выше условий. От уровня этой активации зависит эффективность переработки информации и деятельности в целом. Взаимосвязь между ними опре­деляется законом Йеркса-Джонсона, графическое его изображение приведено на рис. 2.2. Как следует из графиков, качество выполнения легких задач с увели­чением уровня активации монотонно повышается, для сложных задач обычно имеется некоторый оптималь­ный уровень активации.

В отличие от рассмотренного, механизмы фазической активации обеспечивают выполнение второго уровня, то есть осуществляют экстренные кратковре­менные (порядка секунд) сдвиги в уровне активации в ответ на поступление высокозначимого сигнала. При этом фазический сдвиг в уровне активации является, с одной стороны, результатом некоторого, уже осуще­ствленного информационного процесса, а с другой необходимым условием значительной и оперативной интенсификации последующих информационных процессов [128].

 

Рис. 2.2. Взаимосвязь между уровнем активации и качеством деятельности (закон Йеркса—Додсона): 1простейшая задача; 2задачи средней сложности; 3сложная задача.

Важным элементом подсистемы энергообеспече­ния являются механизмы, работа которых проявляется в форме эмоциональных состояний (переживаний) субъекта. Эмоции можно рассматривать как специфи­ческий субъективный параметр определенного класса активационных процессов, тесно связанных с органи­зацией целенаправленного поведения, а именно тех, которые обусловлены прагматической стороной пере­рабатываемой субъектом информации. Согласно ин­формационной теории эмоций последние есть отраже­ние мозгом величины потребности, ее качества и вероятности, удовлетворения в данный момент [165]. Результатом этого является возбуждение системы спе­циализированных мозговых структур, побуждающее субъекта изменить поведение в направлении миними­зации или максимизации (продления, повторения) это­го состояния.

Рассматриваемые до сих пор активационные про­цессы обеспечивают общее изменение пропускной способности СПИ по отношению к любым категори­ям сигналов. Однако реализация целенаправленного поведения в условиях большой плотности поступаю­щей информации, часть которой может быть несуще­ственной для оператора, требует высокой избиратель­ности в переработке этой информации. Поэтому для выполнения третьего из сформулированных выше условий мозг должен обладать некоторыми механизмами, осуществляющими перераспределение ограниченных ресурсов СПИ в пользу избранной категории сигналов. Это осуществляется путем селекции инфор­мации.

Селекция (от лат. selectio — отбор, выбор) заклю­чается в отборе полезной информации в процессе вос­приятия, обусловлена его избирательностью и опреде­ляется задачами деятельности человека. Механизмы селекции информации включают в себя как жесткие, так и гибкие звенья. К числу жестких звеньев следует отнести особенности структуры нервной системы и органов чувств, обусловливающих избирательную чув­ствительность лишь к определенному виду раздражи­телей, ограниченность доступной одномоментному вос­приятию области пространства, ограничения в скорости переработки информации и т. п.

Все эти структуры и механизмы составляют основу для развертывания более гибких и дифференцирован­ных процессов селекции информации, регулирующих протекание информационных процессов, относящих­ся к сфере психики. Ведущая роль при этом принадле­жит, с одной стороны, интенциям (от лат. intentio — намерение, стремление) субъекта, то есть его мотивационной сфере, а, с другой стороны, требованиям си­туации (внешним условиям). На основе осознания и синтеза субъект формирует цели, стратегии и програм­мы поведения, в соответствии с которыми вся посту­пившая информация оценивается с точки зрения по­лезности ее использования в интересах достижения этих целей. Большое значение в процессе селекции информации имеет вероятностное прогнозирование, что позволяет субъекту строить гипотезы относитель­но будущих событий.

Процессы селекции информации могут протекать не только под контролем сознания, но и на бессозна­тельном (непроизвольном, автоматизированном) уров­не, под непосредственным влиянием доминирующих мотивов и в соответствии с индивидуальными особен­ностями переработки информации [128].

Еще одной обеспечивающей подсистемой являет­ся подсистема регистрации информации. Ее назначе­ние состоит в том, чтобы обеспечивать широкий диа­пазон когнитивных (познавательных) функции — от перцептивных процессов до решения задач, объеди­няемых тем, что все они предполагают использование накопленной информации. Эту подсистему иначе можно назвать «память». Ее задачей является регис­трация, организация, хранение сведений о мире в до­ступной для использования форме, что обеспечивает ее обладателю способность к отображению объективной реальности в субъективных образах, то есть в виде информации. Этот аспект соответствует основ­ной функции памяти — функции индивидуального тезауруса субъекта. Именно в этом аспекте память можно выделить как особую подсистему обеспечения информационных процессов, как «информационный фонд» СПИ. Здесь лишь отметим, что работа этой под­системы обычно описывается на основе трехкомпо-нентной модели памяти, предполагающей наличие у человека трех видов памяти: сенсорных регистров, кратковременного хранилища, долговременного хра­нилища [16].

К числу обеспечивающих подсистем условно мож­но отнести и интенции личности. Условность состоит в том, что эта подсистема обеспечивает информацион­ные процессы не непосредственно, а опосредствен-но — через подсистему энергообеспечения (рис. 2.1). Интенции представляют собой любую устремленность к активной деятельности; все явления и механизмы, по­буждающие к деятельности, направляющие ее на дос­тижение цели. В основе интенционального компонен­та деятельности человека лежит его потребностно-мотивационная сфера, т. е. потребности и мотивы. Эта сфера представляет собой иерархически построенную систему побуждений. Потребности и мотивы в этой системе находятся в различных отношениях между собой: синергичности (однонаправленности); антаго­низма (конфликта), взаимоусиливают или ослабляют друг друга. При этом мотивы не всегда осознаются человеком. Более того, высказываемые людьми моти­вировки своих поступков не всегда соответствуют ис­тинным побуждениям.

При изучении интенционального компонента дея­тельности человека применяется классификация внут­ренних факторов, побуждающих человека к активномуповедению, в основе которой лежит уровень конкре­тизации направленности этого поведения:

а) состояние бодрствования — совокупность уровней не­специфической мотивации организма, психики, создаю­щих стремление к любой деятельности;

б) потребности, которые могут быть векторными и функци­ональными; первые являются наиболее дифференциро­ванными по актуализируемому предмету деятельности (как вещественному, так и мысленному, идеальному) и способам удовлетворения потребностей;

в) функциональные потребности — стремление к напря­женной активности (преодоление препятствий), к опреде­ленному темпу выполнения действий, к смене видов дея­тельности (в том числе — к новизне впечатлений);

г) мотивы — конкретные векторные потребности; при этом переход от векторной потребности к мотиву осуществля­ется под влиянием ситуации, т. е. совокупности внешних и внутренних сигналов, которые воздействуют на человека.

Механизмы интенции тесно связаны с социальной и волевой сферами человека. Интенциональные фак­торы являются не только побудительными компонен­тами целенаправленной деятельности, они действуют и в процессе деятельности, являясь регуляторами ее протекания [53].

В заключение необходимо отметить, что до сих пор система переработки информации человеком рассмат­ривалась как одноканальная. Это удобно с методологи­ческой точки зрения, поскольку позволяет довольно на­глядно показать последовательность этапов переработки информации. Однако такое положение дел не всегда соответствует действительности, что подтверждается предложенной А.А. Крыловым концепцией включения [40, 81].

Концепция включения представляет методологичес­кие положения, объясняющие принципы организации целостной деятельности функциональных механизмов мозга, предназначенных для обработки поступающей информации. Концепция включения исходит из пред­положения (впоследствии доказанного эксперименталь­но) о приспособленности информационной системы мозга принимать новые сигналы в процессе текущей деятельности. Новый сигнал может означать такие из­менения во внешней среде, при которых ранее начатая деятельность может быть бесполезной или даже вред­ной. Отсюда возникает необходимость немедленного прекращения осуществляющейся деятельности, а затем корректировки или полного отказа от ее продолжения в зависимости от конкретно сложившихся условий. Кро­ме того, может возникнуть необходимость одновремен­ной обработки информации, относящейся к уже нача­той деятельности, и вновь поступивших сигналов.

Новая деятельность может органически вклю­чаться в предыдущую или протекать в известной мере изолированно. Следовательно, во всех случаях вновь поступившие сигналы так или иначе включа­ются в процесс обработки информации. Это включе­ние может осуществляться либо путем преобразова­ния действовавшей функциональной системы, либо образованием новой системы, предназначенной для информационных преобразований в новой деятель­ности. В дальнейшем, в ходе тренировки, если ана­логичные ситуации возникают многократно, принцип включения все более реализуется в плане преодоле­ния устойчивости частных функциональных систем и образования единой функциональной системы те­кущей деятельности.

Таким образом, концепция включения объединяет принципы организации целостной деятельности функ­циональных информационных механизмов мозга и по­зволяет рассматривать механизм приема и переработки информации человеком как иерархическую многоканаль­ную систему, в которой каждый новый сигнал, новое действие не блокируются на «входе» оператора, а ведут к гибкой перестройке информационного процесса в мозгу человека.

 

2.5. Воспроизведение информации в системе «чешек-машина»

 

Информационные процессы, протекающие в нер­вной системе оператора, существуют не изолирован­но сами по себе, а органически вплетаются в общий информационный процесс в системе «человек—маши­на». Процессы переработки информации происходят и в машинных звеньях системы, поэтому от степени их согласованности с процессами переработки информации человеком во многом зависит эффективность всей системы. Интегральным понятием, характеризу­ющим информационный процесс в системе в целом является воспроизведение информации [74]. Под ним понимается процесс формирования информационной модели (изображения) текущей обстановки, ее воспри­ятия человеком и принятия решения по поводу соот­ветствия построенной модели ее эталону (кодовому эк­виваленту).

Основная проблема воспроизведения информации состоит в том, чтобы найти оптимальное соотношение между требованиями, обусловленными необходимос­тью согласования характеристик информационной модели, с характеристиками управляемого процесса (объекта), оператора и решаемых задач.

В процессе воспроизведения информации реша­ются следующие задачи:

1. прием сообщений, поступающих от источника сообще­ний по каналу связи;

2. размещение информации в буферной памяти согласно адресам и ее хранение в течение требуемого времени;

3. преобразование принятых кодов в соответствующие коды изображений (кодовые эквиваленты информацион­ной модели);

4. визуальное предъявление изображений (информацион­ной модели) в течение требуемого времени;

5. зрительное восприятие информации и принятие решения о соответствии информационной модели эталонной;

6. формирование концептуальной модели (оперативного образца).

Для решения этих задач создается тракт воспроиз­ведения информации, представляющий собой челове­ко-машинную систему, в которой задачи 1 и 2 являют­ся чисто техническими; задачи 3 и 4 хотя и являются техническими, но должны решаться с учетом возмож­ностей и ограничений оператора; задачи 5 и 6 реша­ются оператором.

Структурная схема тракта воспроизведения инфор­мации представлена на рис. 2.3. Пунктирными линия­ми на ней выделены средства отображения информа­ции, на вход которых поступает входной ансамбль кодов FBX (t), а с выхода снимается преобразованная информация (комбинация выходных символов, образующих информационную модель) FBX (t+∆ t).

Особенностью информационной модели является то, что в ней изменяется физическая природа выход­ных сигналов по отношению к входным. При этом осуществляется промежуточное преобразование мно* жества входных кодов FBX (t) в некоторое множество кодов изображений Fвхp(t+∆ t1). Множество FBX (t) состав­ляет первичный кодовый эквивалент информацион­ной модели, а множество преобразованных кодов FBX (t+∆ t1) — вторичный кодовый эквивалент информа­ционной модели FBUX (t+∆ t). Множества Fвх(t) Fnp(t+∆ t), FBUX(t+∆ t) связаны между собой зависимостью функци­онального характера.

 

(2.11)

 

где ∆ t> ∆ t1 — времена соответствующих преобразова­ний, I — смысловое содержание информации, заклю­ченное в выходных и входных сигналах.

 

Рис.2.3. Структурная схема тракта воспроизведения информации.

 

В тракте воспроизведения информации (рис. 2.3) возможно появление ошибок (сбоев). Их источниками могут являться как технические звенья (при решении задач 1...4), так и оператор (при решении задач 5, 6). При этом следует иметь ввиду, что ошибки оператора зависят не только от его психофизических качеств, но в определенной степени и от результатов решения за­дач 3 и 4 техническими элементами тракта воспроиз­ведения информации. Ошибки оператора оказывают отрицательное влияние на процесс воспроизведения информации, что может привести к неадекватному формированию оперативного образа. Эти ошибки мож­но сократить путем повышения квалификации опера­тора за счет профессионального отбора и обучения и совершенствования технических средств тракта вос­произведения информации путем учета инженерно-психологических требований при их проектировании и изготовлении.

На последнем аспекте требуется остановиться особо. Дело в том, что при создании средств отображе­ния информации (СОИ) обычно учитываются инженер­но-психологические требования только к информаци онной модели, отображаемой с помощью лицевых ча­стей СОИ. Однако только этого не достаточно для обес­печения надежной работы оператора и всего тракта воспроизведения информации. Качество информаци­онной модели зависит также (при решении задач 3 и 4) и от выполнения инженерно-психологических требо­ваний к техническим элементам СОИ, обеспечиваю­щих решение этих задач. Это объясняется тем, что на вход СОИ поступают данные в машинном коде (кодо­вые эквиваленты), а с выхода снимаются символы зрительного алфавита.

При этом сигналы на входе СОИ определяются методом их кодирования, а на выходе — методом их формирования. Автономное использование этих методов позволяет производить только одностороннюю оценку СОИ как преобразователя машинного алфа­вита в зрительный. Из этого возникает естественная необходимость совместного изучения и исследования методов кодирования применительно к соответствую­щим им методам формирования отображаемых дан­ных и, наоборот, методов формирования элементов отображения к соответствующим методам их кодиро­вания. Органическое сочетание этих двух методов (а они составляют суть решения задач 3 и 4) удобно назвать принципом преобразования машинного алфа­вита в зрительный [30]. Эти принципы делятся на два основных вида: непосредственное и с промежуточным преобразованием кодовых эквивалентов, адекватных отдельным элементам информационной модели, под­лежащим отображению.

Иными словами, при создании технических средств, обеспечивающих преобразование машинного алфави­та в зрительный, необходимо учитывать чисто техни­ческие требования (емкость запоминающих устройств, их количество, частоту выборки кодовых эквивалентов и т. д.) и требования, вытекающие из характеристик ин­формационной модели (количество элементов отобра­жения, требуемая частота воспроизведения данных, ин­формационная емкость изображения и др.). Для учета степени реализации этих требований введено понятие коэффициента преобразования машинного алфавита в зрительный, получены формулы для его определения при различных методах преобразования, проведена сравнительная оценка этих методов при различных исходных данных, что позволяет в каждом конкретном случае выбрать наиболее эффективный метод преоб­разования [30]. Только при применении такого комп­лексного подхода, основанного на одновременном уче­те чисто технических и инженерно-психологических требований, возможно достижение качественного вос­произведения информации в СЧМ.

Качество воспроизведения информации оценивает­ся с помощью ряда показателей, основными из которых являются: быстродействие, информационная емкость, изобразительная возможность, точность, достоверность и надежность воспроизведения информации [74].

Быстродействие тракта воспроизведения информа­ции характеризуется временем полного цикла Тц. Это есть минимальное время между последовательными моментами смены информации на информационной модели, равное

(2.12)

где tфс— время формирования сообщения, т. е. ин­тервал времени, в течение которого в источнике со­общений (например, ЭВМ) подготавливается к пе­редаче в СОИ требуемый массив информации (первичный кодовый эквивалент FBX); tвэ— время выдачи отображаемой информации на экран; ton — время восприятия информации оператором, т. е. ин­тервал времени, в течение которого он осознал смысл предъявляемой информации и делает заклю­чение о степени соответствия воспринятого изоб­ражения эталонному.

Быстродействие может быть также охарактеризо­вано скоростью смены информации, которая равна

(2.13)

где I (А) — количество информации в одном цикле.

Частным случаем формулы (2.13) является такой, когда ее числитель и знаменатель относятся к отрезку времени, обратному критической частоте слияния мель­каний [30].

Информационная емкость тракта воспроизведения характеризует максимальное количество информации, которое может быть отображено на информационной модели. Значение информационной емкости зависит от структуры информационного поля, количества позиций в нем и числа символов в алфавите, закрепленном за позицией. Если в СОИ для любой из позиций инфор­мационного поля используются алфавиты с одинако­вым числом символов, то информационная емкость равна

(2.14)

где n — количество позиций, которые могут занимать элементы отображения в пределах информационного поля; m — число состояний, в которых может находить­ся каждый элемент.

Если же в СОИ информационные поля использу­ют алфавиты с различным числом символов, закреп­ленных за определенными группами позиций, то ин­формационная емкость равна

(2.15)

где М — число различных алфавитов, используемое в данном информационном поле; ni — число позиций, занимаемых символами i-ro алфавита; mi— длина i-гo алфавита.

Информационная емкость определяет максималь­ные информационные возможности СОИ. Реальное же количество отображаемой информации обычно мень­ше информационной емкости. Равенство возможно лишь в том случае, если для каждой позиции информа­ционного поля равновероятно появление любого из символов алфавита, относящегося к ней. Если появле­ние символов алфавита длиной m равновероятно для любой из n позиций, то количество отображаемой ин­формации равно

(2.16)

где Pj — вероятность появления j-того символа.

В случае, когда алфавиты различны для разных групп позиций, то предыдущее соотношение принимает вид

(2.17)

Приведенные формулы не учитывают статистичес­кие связи между появлением различных символов ал­фавита. В ряде случаев пользуются понятием удельной информационной емкости, под которой понимается максимальное значение количества информации при­ходящейся на единицу площади экрана, т. е. отноше­ние 1и к площади экрана.

Изобразительная возможность тракта характери­зуется набором воспроизводимых символов и опера­ций над ними на экране СОИ. Оптимальный набор символов составляет информационную модель для данного класса решаемых задач. Символы набора дол­жны удовлетворять легкости запоминания, скорости и безошибочности опознания. Это во многом зависит от степени различия отдельных символов алфавита. Ме­рой оценки степени различимости двух символов яв­ляется коэффициент декорреляции

(2.18)

где n0 — число элементов, входящих в оба символа, п1 и п2 — количество элементов, составляющих сим­волы.

Интегральная оценка всего алфавита определяет­ся соотношением

(2.19)

где N — длина алфавита символов.

Изобразительные возможности во многом зависят также от сложности обобщенной фигуры знакоместа. Они характеризуются величиной 8

(2.20)

где nф — число элементов структуры знакоместа.

На рис. 2.4 показаны зависимости значений ρ и δ от величины nф для цифро-буквенных изображений с кусочно-линейной аппроксимацией. Примеры воз­можных структур знакомест для этих изображений приведены на рис. 2.5. Из рис. 2.4 следует, что изоб­разительная возможность существенно улучшится при увеличении nф до 8 — 9 элементов, при дальней­шем увеличении nф величины ρ и δ изменяются не­значительно, а при nф> 20 они практически не зависят от nф. Изобразительные возможности существенно улучшаются, если имеются возможности стирания, из­менения, дополнения отдельных знаков, возможность изменять масштаб, ориентацию, обозначать линии, заштриховывать отдельные части символов, если име­ется возможность использования различных цветов и полутонов [73].

Достоверность формирования изображений есть степень соответствия сформированного изображения эталонному, т. е. сформированному в соответствии с первичным кодовым эквивалентом. Количественно она может быть определена через вероятность безошибоч­ного формирования изображения Рф при отсутствии наложения изображений. В более сложных случаях необходимо учитывать и возможность появления нало­жений. В ряде случаев для оценки достоверности фор­мирования изображений можно использовать форму­лы (2.8)...(2.10).

Точность воспроизведения информации характе­ризуется смещением информации при ее отображении относительно системы координат. Различают абсолют­ную и относительную точность воспроизведения ин­формации. Абсолютная точность принимается во вни­мание при анализе измерений на воспроизводимом изображении с экрана. Относительная точность при­нимается во внимание при анализе общего изображе­ния с помощью экранов (точность наложения или со­вмещения).

 

Рис. 2.4. Зависимость коэффициента декорреляции и

сложности обобщенной фигуры от числа элементов

знакоместа.

 

Рис. 2.5. Пример обобщенных структур для формирования

цифро-буквенной информации.

 

Особо высокие требования предъявляются к точ­ности устройств индивидуального пользования, исполь­зуемых для количественной оценки информации, точ­ных расчетов, точных графических построений и т. д. Так как точность воспроизведения в значительной степени зависит от оператора, то требования к точно­сти СОИ, должны согласовываться с конкретными задачами, решаемыми системой, и возможностями оператора. При этом суммарная ошибка воспроизведения информации определяется как

(2.21)

где σ оп и σ сои — соответственно среднеквадратические ошибки восприятия информации оператором и отобра­жения информации.

Надежность воспроизведения информации ха­рактеризует способность тракта воспроизведения выполнять в полном объеме возложенные на него функции при заданных условиях работы. В процессе функционирования тракта воспроизведения инфор­мации отказ может производиться как по вине чело­века-оператора, так и по причине выхода из строя технических средств. В случае последовательного соединения элементов (например, как показано на рис. 2.3) вероятность безотказной работы тракта рав­на произведению вероятностей безотказной работы каждого элемента

(2.22)

Формула (2.22) показывает лишь принцип опреде­ления надежности системы, включающей в себя n последовательно соединенных технических звеньев и человека.

 


СИСТЕМА «ЧЕЛОВЕК - МАШИНА»







Дата добавления: 2014-12-06; просмотров: 934. Нарушение авторских прав; Мы поможем в написании вашей работы!



Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...

Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...

Логические цифровые микросхемы Более сложные элементы цифровой схемотехники (триггеры, мультиплексоры, декодеры и т.д.) не имеют...

Хронометражно-табличная методика определения суточного расхода энергии студента Цель: познакомиться с хронометражно-табличным методом опреде­ления суточного расхода энергии...

ОЧАГОВЫЕ ТЕНИ В ЛЕГКОМ Очаговыми легочными инфильтратами проявляют себя различные по этиологии заболевания, в основе которых лежит бронхо-нодулярный процесс, который при рентгенологическом исследовании дает очагового характера тень, размерами не более 1 см в диаметре...

Примеры решения типовых задач. Пример 1.Степень диссоциации уксусной кислоты в 0,1 М растворе равна 1,32∙10-2   Пример 1.Степень диссоциации уксусной кислоты в 0,1 М растворе равна 1,32∙10-2. Найдите константу диссоциации кислоты и значение рК. Решение. Подставим данные задачи в уравнение закона разбавления К = a2См/(1 –a) =...

Понятие о синдроме нарушения бронхиальной проходимости и его клинические проявления Синдром нарушения бронхиальной проходимости (бронхообструктивный синдром) – это патологическое состояние...

Опухоли яичников в детском и подростковом возрасте Опухоли яичников занимают первое место в структуре опухолей половой системы у девочек и встречаются в возрасте 10 – 16 лет и в период полового созревания...

Способы тактических действий при проведении специальных операций Специальные операции проводятся с применением следующих основных тактических способов действий: охрана...

Studopedia.info - Студопедия - 2014-2024 год . (0.01 сек.) русская версия | украинская версия