Студопедия Главная Случайная страница Задать вопрос

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Энергетическая характеристика экосистем





 

Если проследить процессы превращения и получения энергии в экосистемах, то нельзя не придти к тому выводу, который сделал упоминавшийся выше Майер, утверждавший, что жизнь есть создание солнечного луча. Действительно, лучистая энергия Солнца посредством фотохимического синтеза сначала преобразуется зелеными растениями в органические соединения, которые впоследствии служат пищей для растительноядных животных, а последние в свою очередь - пищей для других животных. Кроме того, задолго до этого органическое вещество, заготовленное на протяжении тысячелетий растениями, как и сами растения, особенно деревья, подверглись многочисленным химическим превращениям и образовали то ископаемое топливо, которое до сих пор служит важнейшим источником энергии для общества.

В экосистемах происходит постоянное преобразование рассеянной в пространстве солнечной энергии в более концентрированные ее формы сначала автотрофными растениями, а затем гетеротрофными животными и человеком. При этом на каждой стадии превращения энергии происходит также ее диссипация, или рассеяние, в окружающее пространство. Для характеристики этих процессов нам необходимо привлечь законы термодинамики, которые мы изучали в гл. 6, но их необходимо конкретизировать применительно к экосистемам.

Закон сохранения энергии полностью применим и к этим системам, ибо никогда не наблюдались случаи создания энергии из ничего. Энергия может лишь превращаться из одной формы в другую, но она никогда никуда не исчезает.

Второй закон термодинамики, который в физике обычно формулируют с помощью понятия энтропии, в экологии предпочитают выражать посредством утверждения о преобразовании концентрированной энергии в рассеянную. Процесс концентрации рассеянной солнечной энергии происходит, как уже говорилось выше, в различных живых системах и охватывает длительный период времени. Полученная концентрированная энергия может быть в дальнейшем использована в экосистемах в виде пищи, а в технике - как ископаемое топливо. В обоих случаях будет происходить преобразование концентрированной энергии в рассеянную.

Какую энергию можно считать концентрированной?

 

С экологической точки зрения, энергия по способу своего получения будет тем больше концентрированной, чем дальше отстоит источник ее получения, например пиша, от начала превращения рассеянной солнечной энергии, т. е. от автотрофных организмов, а именно зеленых растений и микроорганизмов.

 

В физических терминах концентрированную энергию можно определить как обладающую низкой степенью энтропии, т. е. характеризующуюся меньшей степенью беспорядка. Ведь в результате концентрации энергии происходит выведение беспорядка из системы во внешнюю среду. Поэтому если беспорядок в системе уменьшается, то во внешней среде он увеличивается.

В отличие от концентрации рассеяние энергии сопровождается возрастанием беспорядка в системе. Поэтому если система останется закрытой, то она окажется полностью дезорганизованной, т. е. придет в состояние максимального беспорядка, соответствующего установлению теплового равновесия в системе.

Таким образом, с энергетической точки зрения системы могут описываться не только количественно, но и качественно, причем высококачественными будут считаться наиболее концентрированные формы энергии, которые могут обладать более высоким рабочим потенциалом, т. е. возможностью произвести соответствующую работу. Так, например, ископаемое топливо обладает большим рабочим потенциалом, чем рассеянная солнечная энергия. Аналогично этому животная пища является более качественной, чем растительная. Опосредованно качество используемой энергии определяется химической структурой ее источника.

Все приведенные выше рассуждения показывают, что при энергетическом подходе задача экологии по сути дела сводится к изучению связи между рассеянным солнечным излучением и экосистемами, а также процессами последовательного превращения менее концентрированных форм энергии в более концентрированные.

Поскольку материальное производство общества существенным образом зависит от использования энергии, постольку представляется целесообразным провести классификацию экосистем с точки зрения применения ихэнергии в интересах развития общества и прежде всего его производительных сил. На этой основе можно выделить четыре фундаментальных типа экосистем.

1. Природные системы, полностью зависящие от энергии солнечного излучения, которые можно назвать системами, движимыми Солнцем. Несмотря на то что такие системы не в состоянии поддерживать достаточную плотность населения, они тем не менее важны для сохранения необходимых экологических условий на планете. Следует также отметить, что такие природные системы занимают огромную площадь на земной поверхности. Ведь только одни океаны покрывают 70% этой поверхности.

2. Природные системы, движимые Солнцем, а также получающие энергию из других природных источников, к которым относятся прибрежные участки морей и океанов, большие озера, тропические леса и некоторые другие экосистемы. Кроме солнечной энергии, такие системы функционируют и растут за счет энергии, например, морских прибоев, приливов, глубоководных течений, рек, дождей, ветра и тому подобных источников.

3. Природные системы, движимые Солнцем и получающие энергию от ископаемого топлива (нефть, уголь, древесина и др.). Исторически такие смешанные естественные и искусственные экосистемы впервые возникли в сельском хозяйстве для возделывания культурных растений и улучшения пород домашних животных. Сначала там применялась мышечная сила человека и животных, а впоследствии и энергия машин, работающих на ископаемом топливе.

4. Современные индустриально-городские системы, использующие главным образом энергию ископаемых горючих, преимущественно нефти, угля, газа, а также радиоактивных веществ для получения атомной энергии. В этих системах производится основное богатство страны в виде разнообразных промышленных товаров, а также переработка пищевых продуктов для питания больших масс сконцентрированного в городах и индустриальных центрах населения. Сырье для такой переработки они получают из сельскохозяйственных экосистем. Энергетическая зависимость индустриальных центров от Солнца минимальна, так как энергоносители они получают от добывающей промышленности, а продукты питания - от сельского хозяйства.

Интенсивный рост промышленности в развитых странах сопровождается все возрастающим потреблением энергии и одновременно все увеличивающимися отходами производства. Загрязнение атмосферного воздуха, отравление водных источников, накопление радиоактивных отходов - неизбежные спутники жизни в крупных индустриальных центрах. Хищническая эксплуатация быстро сокращающихся запасов ископаемого топлива, погоня за прибылью любой ценой и особенно за счет нарушения экологического баланса в окружающей среде - все это с особой остротой выдвигает перед человечеством и прежде всего перед промышленно развитыми странами глобальную экологическую проблему сохранения динамического равновесия биосферы и нормального жизнеобеспечения людей. Поскольку сейчас наша цивилизация находится в процессе перехода от биосферы к ноосфере, когда разум становится определяющей силой общества, то вполне естественно задуматься над глобальной стратегией и перспективами дальнейшего развития мира. Хотя строить прогнозы всегда рискованно, тем не менее они необходимы для того, чтобы наметить основные направления, по которым с определенной степенью вероятности можно эффективно подготовиться к встрече будущего.

Недостатка в таких прогнозах и сценариях будущего развития не ощущается. Одни из них имеют оптимистический характер и делают ставку главным образом на то, что новая технология будет принципиально отличаться от современной, станет безотходной, менее энергоемкой и более совершенной по другим параметрам. Другие считают, что при установившейся тенденции развития никакая технология не спасет общество, если люди будут непрерывно увеличивать потребление, предприниматели добиваться получения максимальной прибыли, а промышленно развитые страны неизменно стремиться к экономическому росту.

Выход из надвигающегося экологического кризиса многие видят в радикальном изменении сознания людей, их нравственности, в отказе от взгляда на природу как объект бездумной эксплуатации ее человеком. Однако одного изменения и совершенствования взглядов и нравственности людей явно недостаточно для выхода из экологического кризиса и решения экологических проблем в будущем. Для этого необходимо, прежде всего, чтобы общество в своей экономической деятельности учитывало не только непосредственные материальные и трудовые ресурсы, затрачиваемые на производство товаров и услуг, но и тот вред, который наносится окружающей среде в результате такого производства. Все признают, что рыночная экономика пока еще не научилась это делать. Очевидно, что экономия энергоносителей и других быстро уменьшающихся запасов сырья, создание малоотходной и безотходной технологии, поиски и использование альтернативных источников энергии - все это во многом сможет помочь решению экологической проблемы, по крайней мере, ослабить ее остроту.

В этой связи заслуживает особого внимания инициатива ученых и общественных деятелей, объединившихся в рамках Римского клуба, участники которого собрались в 1968 г. для обсуждения актуальных глобальных проблем человечества'. Первый же доклад "Пределы роста", представленный американскими учеными Деннисом и Донеллой Медоузами в 1972 г., вызвал сильнейший шок среди многих политических деятелей и представителей общественности. Основываясь на фактических данных и тенденциях экономического, технического и социального развития, авторы построили компьютерную модель современного общества, в которой были учтены связи между различными подсистемами общества и воздействие на них разных факторов роста. Они показали, что если потребление ресурсов и промышленный рост вместе с увеличением численности населения будут продолжаться прежними темпами, то будет, достигнут "предел роста", за которым неизбежно последует катастрофа. Хотя многие специалисты критиковали доклад за то, что в нем не учитываются усилия общества по совершенствованию технологии, поискам новых источников энергии и сырья и т. д., но все вынуждены были признать, что в нем содержится обоснованная тревога за будущее человечества.

Во втором докладе - "Человечество на перепутье", представленном Михаилом Месаровичем и Эдуардом Пестелем, преодолены некоторые недостатки первого и намечены перспективы развития не столько мирового сообщества, сколько отдельных его регионов. Такой подход учитывает конкретные особенности и условия роста отдельных регионов мира и поэтому лучше подходит для решения экологических, энергетических, сырьевых и других глобальных проблем. В последующих докладах обсуждались более конкретные проблемы, касающиеся отношений со слаборазвитыми странами, переработки отходов, использования энергии и другие.

Деятельность Римского клуба привлекла внимание широкой публики к актуальным глобальным проблемам современности, в частности, к такой жизненной для всего человечества проблеме, как сохранение окружающей природной среды. Участники клуба наметили также возможные пути решения проблем, однако, поставив правильный диагноз возникшим трудностям и болезням современного общества, они мало преуспели в том, чтобы убедить общество следовать их советам и предпринять конкретные действия по реализации выдвинутых ими программ и рекомендаций.

Основные понятия и термины
Автотрофы Биосфера
Биом Гетеротрофы
Живое вещество Ноосфера
Надорганизменный уровень Принцип Реди
Устойчивость Экологическая система
Стабильность Экосфера

 

Литература

 

Основная:

Вернадский В. И. Начало и вечность жизни. - М.: Республика, 1989.

Одум Ю. Экология. - М.: Мир, 1986. T.I, гл. 1-2.

 

Дополнительная:

Вернадский В. И. Биосфера и ноосфера. - М.: Наука, 1989.

 

1. Что включает В. И. Вернадский в понятие биосферы?

2. Какие элементы называются в биосфере биогенными и косными?

3. Как осуществлялся переход от биосферы к ноосфере?

4. Почему В.И. Вернадский сравнивает деятельность разума человека с геологической силой?

5. Что изучает экология?

6. Что служит наименьшей единицей в экологии?

7. Расскажите об основных трофических (пищевых) связях в экосистемах.

8. Почему солнечная энергия служит источником функционирования и развития экосистем? Обоснуйте свой ответ.

9. Какую энергию в экологии считают концентрированной, рассеянной?

10. Как связана деятельность общества с функционированием экосисистем?

 

 






Дата добавления: 2014-12-06; просмотров: 341. Нарушение авторских прав

Studopedia.info - Студопедия - 2014-2017 год . (0.09 сек.) русская версия | украинская версия