Студопедия Главная Случайная страница Задать вопрос

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Функции и линии регрессии





Пусть и - две случайные непрерывные величины, находящиеся в корреляционной зависимости. Это значит, что каждому значениюx случайной величины соответствует вполне определенное распределение вероятностей величины . Плотность распределения величины при условии, что , называется условной плотностью распределения случайной величины .
Вычислим для данного случая так называемое условное математическое ожидание величины при условии, что .Согласно определению математического ожидания непрерывной случайной величины, имеем

[см. формулу (40)]. Каждому возможному значению x случайной величины соответствует определенное значение условного математического ожидания . Таким образом, мы получаем функцию переменной x. Эта функция y=f(x)называется функцией регрессии величины на , а ее график - линией регрессии на .
Аналогично определяется условное математическое ожидание величины при условии, что :

где - условная плотность вероятности случайной величины при условии, что .
Функция x=g(y) называется функцией регрессии величины на , а ее график - линией регрессии на .
Cледует иметь в виду, что функции y=f(x) и x=g(y) не являются обратными по отношению друг к другу.
Если обе функции и линейны, то линиями регрессии являются прямые. В этом случае говорят, что случайные величины и связаны линейной корреляционной зависимостью. Можно показать, что уравнение прямой регрессии на имеет следующий вид:

(74)

где - условное математическое ожидание случайной величины при . Аналогично записывается уравнение прямой регрессии на :

(75)

где - условное математическое ожидание случайной величины при .
Величины

(76)

называются коэффициентами регрессии соответственно на и на .
Из формул (76) следует, что

(77)

Равенство (77) показывает, что оба коэффициента регрессии имеют одинаковые знаки. Если они положительны (отрицательны), то с возрастанием аргумента возрастают (убывают) соответствующие условные математические ожидания.
Если , то, как следует из уравнений (74) и (75), и , т.е. в этом случае условные математические ожидания постоянны и равны соответствующим математическим ожиданиям случайных величин и .

Замечание. Можно доказать, что если система двух случайных величин имеет нормальное распределение, то эти величины находятся в линейной корреляционной зависимости.

 

 






Дата добавления: 2014-12-06; просмотров: 217. Нарушение авторских прав

Studopedia.info - Студопедия - 2014-2017 год . (0.005 сек.) русская версия | украинская версия