Студопедия — Третье началоКТД известно как теорема Нернста [121,122], следствием которой является так называемый принцип недостижимости нуля абсолютной темпе­ратуры. 3 страница
Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Третье началоКТД известно как теорема Нернста [121,122], следствием которой является так называемый принцип недостижимости нуля абсолютной темпе­ратуры. 3 страница






для магнитного взаимодействия:

Fm = ±g [ w, B ]; Пm = grmwВ;

для гравитационного взаимодействия:

Fg = –fMm r g/rgrg2; Пg = fMm/rg.

Кроме того, электрическое имагнитное взаимодейст­вия могут описываться с помощью известных из физики формул [35, 125]:

Пе = EDVе/ 2 = ε оε Е2V/ 2= φ g =...

Пm = ВHVm/ 2= μ оμ Н2Vm/ 2=...

В случае микрочастиц могут применяться формулы:

П = α kТ = ħ ω = р/п =...,

и другие.

Совершенно очевидна возможность описания любого i -гoвзаимодействия как с помощью механических, так и с помощью термодинамических параметров состояния. Это связано с тем, что выражение потенциальной энер­гии i -го взаимодействия допускает многовариантные модификации. Например, желая с помощью системы за­конов (D) описать электрическое взаимодействие, мож­но формулу потенциальной энергии этого взаимодейст­вия выразить в видах:

Пе = g1g2/ 4 π ε оε rе = рeVe = ε оε Е2Vе/ 2= φ g = α еkТ = TеSе = ħ ω e =

= mеw2е - iђVJl=...

Аналогично обстоит дело и с любым другим типом взаимодействия. По существу эта аналогия является следствием природной аналогии и выражается в исполь­зовании в теории метода обобщенных потенциалов и обобщенных координат.

В указанных формулах применены следующие обо­значения: р, V –давление, объем вещества; Т, S – абсо­лютная температура, энтропия: μ i, ni химический по­тенциал, молекулярный состав химически реагирующих веществ: N, t – мощность, время: q, φ – электрический заряд, электрический потенциал; ε о, ε – электрическая постоянная, относительная диэлектрическая проницае­мость вещества: μ о, μ – магнитная постоянная, относи­тельная магнитная проницаемость вещества; rе, rm, rg со­ответственно: расстояние между электрическими заря­дами, магнитными зарядами; центрами масс тел; w, В, Н – скорость, магнитная индукция, напряженность маг­нитного поля; E, D – напряженность электрического по­ля электрическая индукция; α = f(p, T) – фактор сжи­маемости вещества; k – постоянная Больцмана; ħ – постоянная Планка; ω – круговая частота.

Ввиду векторного вида первых двух законов системы (D) закон для W следует записать для координатных всей х, у, z. В. случае же описания сложного взаимодействия необходимо учитывать, что результирующее воз­действие является суммой всех одиночных.

В дифференциальной форме записи система законов (D) принимает вид [56, 83]:

d K /dt = d (m w) /dt = d (F t) /dt = γ F;

d L /dt = d [ r, K ] /dt = d [ r, m, w ] /dt = d [ r, F, t ] /dt = γ M; (E)

dW/dt = d (γ ± 2) П/ 2 dt = d (γ ± 2) E/γ dt = 0.

Соответственно в дифференциальной форме долж­ны использоваться указанные ранее выражения для потенциальной энергии, определяющие тип рассмат­риваемого энергетического взаимодействия. Таким об­разом, система законов (Е) автоматически включает в себя весь набор дифференциальных законов новой (не­химической и химической) термодинамики и новой ме­ханики, полученных ранее.

Поскольку системы уравнений (D) и (Е) содержат со­отношения механики и термодинамики, то следует при­нять в обращение и единую систему понятийного ап­парата для них, так как только таким способом можно привести в полное соответствие понятия различных на­учных дисциплин, составляющих современное естество­знание. Учитывая то, что масса тела, фигурирующая в законах новой механики и новой термодинамики, явля­ется переменной величиной, представляется целесо­образным условиться считать любые физические вели­чины механики и термодинамики параметрами состо­яния вещества термомеханической системы. Это позволит кроме приобретения удобства от принятия единого понятийного аппарата всего естествознания, из­бежать проведения совершенно бесплодных, но посто­янно ведущихся физиками дискуссий, касающихся точ­ного определения таких совершенно неопределимых (в силу изменяемости их величин) понятий физики, как масса, время, сила, импульс и тому подобных.

На этом заканчивается построение физико-химиче­ских основ обобщенной теории взаимодействий оди­ночных макро- и микротел с окружающей средой.

 


 

6. Электричество и кванты

 

6.1. Заряды и электрические взаимодействия

 

Способность янтаря, потертого о шерсть, притягивать легкие предметы была замечена людьми в глубокой древности. Позже обнаружено, что данное свойство присуще и другим веществам. Притяжение, возникаю­щее при натирании тел, было названо Джилбертом электризацией, а состояние наэлектризованных тел — заряженным (заряженные тела те, на которых имеются свободные электрические заряды). Было найдено, что существует два рода зарядов — положительные и отри­цательные. К тому же выяснилось, что одноименные заряды отталкиваются, а разноименные притягиваются и эти взаимодействия по структуре аналогичны закону притяжения И. Ньютона.

Так в науку вошло понятие «заряды» [134]:

«В настоя­щее время твердо установлено (?? – А.Ч.), что электри­ческие заряды существуют в природе в виде заряжен­ных частиц, которые мы считаем простейшими или элементарными. Элементарная отрицательно заражен­ная частица, с которой нам вронов одинаков и равен 1, 6-приходится встречаться в электрических явлениях, получила название электрона. Заряд каждого из электронов одинаков и равен 1, 6∙ 10-19 Кл. Масса электрона чрезвычайно мала и составляет всего около 10-30 кг».

Постулируется, что все электроны тождественны по своим свойствам, имеют одинаковую массу и заряд наименьшей величины. К другим свойствам электрона можно от­нести [135]:

• наличие у них наряду с корпускулярными свойст­вами (свойствами частиц) и квантовых свойств (дуа­лизм волна-частица);

• наличие внутреннего момента количества движения (спин);

• наличие магнитного момента;

• отсутствие пространственных размеров (их до сих пор не удалось замерить, а потому электрон полагают точкой);

• свойство квантуемости и сохранения заряда [в изо­лированной системе (? – А.Ч.)величина электрического за­ряда остается неизменной];

• электрон, как и все вещественные частицы, движет­ся в пространстве по инерции.

Таким образом, свойства электрона становятся тем фундаментом, который и составляет естественную базу квантовой механики, определяя механизм взаимодейст­вия элементарных частиц в соответствии с законом Ку­лона, имеющим вид:

F = e1e2/R2, (6.1)

где е1, е2 – заряды электронов, R – расстояние между электронами.

На основе этого закона была разработана планетарная модель структуры атома, по которой электроны враща­лись на орбите вокруг ядра, как планеты Солнечной системы вокруг Солнца. Однако эта модель не могла быть принята даже как гипотеза, поскольку в соответст­вие с электродинамикой электрон, вращающийся на ор­бите, должен был постоянно излучать энергию, вра­щаться по спирали, приближаясь к ядру и за относительно короткий срок упасть на него. (Интерес­но, что аналогичным образом должны вести себя пла­неты и спутники планет Солнечной системы, но на них данный закон не распространили.) Это можно пока­зать хотя бы на следующем примере.

Рассмотрим время существования электрона, вра­щающегося на орбите вокруг ядра-протона на расстоя­нии а [136]. Сила взаимодействия F этих зарядов е равна:

F = е22.

Приравняем произведение массы электрона т на ус­корение v2/а, получаем:

mv2/a = е22,

откуда:

v2 = е2/та.

Полная энергия электрона Е:

Е = mv2/ 2– е2/а = – е2/ 2 а, (6.2)

где е2 – потенциальная энергия электрона.

Из (6.2) следует, что радиус орбиты электрона в атоме может быть произвольным (что можно считать явной аналогией с планетарными орбитами). Движение элек­трона, как полагают, позволяет рассматривать систему электрон-протон как диполь с моментом d = er (где r – радиус-вектор от протона к электрону), являющегося функцией времени, и потому система будет излучать электромагнитные волны. Интенсивность излучения J находится из уравнения:

J = 2 d2/c2.

Поскольку d = er = ew, где w – ускорение электрона, то

J = 2 e2w 2/3c3.

Так как w = е2/та2, имеем;

J = 2 e6/ 3 c3m2a4, (6.3)

количество энергии, которое непрерывно излучается электроном за 1 с.

Предполагается, что энергия эта черпается за счет электромагнитной энергии атома, поскольку, как пола­гают, других источников ее нет. И можно для продол­жения расчета использовать соотношение:

J =dE/dt.

Подставляя в (6.2) выражение для J, получаем:

а/ 2 а2 = – 2 e4/ 3 c3m2a4,

или, дифференцируя:

a2da = – 4 e4dt/ 3 c3m2, (6.4)

и получаем:

а3 = – 4 e4t/m2c3 + const.

Следовательно, с течением времени t радиус орбиты а будет уменьшаться. Если при t = 0 радиус орбиты был аo, то его величина со временем изменяется по следую­щему уравнению:

a3 = ao3 4 e4t/m2c3,

и при t = t определяется условием аo3 = 4 е4t/т2с3, ради­ус орбиты приблизится к 0 и электрон упадет на протон. Отсюда t есть предполагаемое время жизни атома. Оценим t для классического радиуса электрона ro = е2/тс2 = 2, 8·10-13 см, принимая боровский радиус рав­ным а = 10-8 см имеем:

t = (ao/ro)3 ro/ 4 c = 0, 25(10-8/2, 8·10-13)3(2, 8·10-13/3·1010) = 10-10 c.

Или время «жизни» атома водорода по расчету со­ставляет около 10-10сек.

Однако корректно ли представление о том, что систе­ма электрон-протон является диполем? Диполь есть система с единой метрикой для обоих объектов. Метри­ка же у поверхности ядра на несколько порядков отли­чается от метрики у поверхности электрона. И геомет­рическая величина мерного инструмента на расстоянии между ними будет изменяться по величине, а следова­тельно, к этому пространству неприменима операция дифференцирования. Это очень характерный пример некорректности дифференцирования при описании взаимодействия электрона и протона, как и многих дру­гих взаимодействий. Принимая систему протон-электрон за диполь мы неявно предполагаем (постули­руем) тождественность и неизменность их зарядов и масс и то, что расстояние между ними од­нородно, и от точки к точке может быть замерено хотя и очень маленьким, но жестким и неизменным измери­тельным инструментом Dа, Все эти посылки не обосно­ваны, особенно расстояние, которое от центра электро­на до центра протона не конечно, а бесконечно. К тому же для природных тел расстояния отсутствуют и при формализации для каждой области пространства стано­вятся произведением периода пульсации поля (гравита­ционного или электромагнитного) на скорость этого движения. Да и все свойства, входящие в (6.3), являют­ся величинами переменными. И потому, дифференци­руя (6.4), мы должны, если собираемся получать пра­вильный результат, дифференцировать не только расстояние, но и заряд, и массу, и скорость света и, ко­нечно, радиус орбиты. Но расстояние от ядра до электрона по радиусу изменяется и, естественно, что его дифференцирование приводит к ошибочному результа­ту. Далее уравнение (6.4) будет проверено на примере времени существования планеты Земля и по расчету оказывается, что через ¾ 150 тыс. лет после образования Земля должна была бы упасть на Солнце. Но тоже не падает.

Поскольку электрон не падает на ядро и структура атома не разрушается в течение длительного времени, то поведение электрона оказывалось необъяснимым, а его движение не подчинялось ни законам классической механики, ни электродинамики. Поэтому последовал вывод о невозможности описания движения электрона класси­ческими методами, и было предположено (постулировано), что в микромире действуют квантовые законы, отличные от законов макромира. И первый шаг в направлении кван­тования был сделан Нильсом Бором после того, как Резерфорд достоверно доказал, что внутри атома имеется твердое образование — ядро. Н. Бор стимулировал вы­работку такой формализации микроявлений, которая во всех деталях принципиально отличалась от макроявлений, полностью исключила наглядность их и стала в XX веке «привычным и незыблемым фактором всеобщего непонимания квантовых явлений» [136], изучение кото­рых начинается еще в школе. Вот пример того, как формулируются в книге для старшеклассников основ­ные особенности квантовых представлений микромира [137]:

«Законы, по которым движутся микрочастицы, рез­ко отличаются от законов ньютоновской классической механики (п/ж шрифт и курсив везде мой – А. Ч.). Но законы этих разных миров и не должны быть похожими (?? – А.Ч.). В макро­мире, в мире больших тел, одни масштабы: длины по­рядка, например, одного метра и. массы порядка, на­пример, одного килограмма. У микрочастиц же в их микромире совсем другие масштабы: порядка 10-8 см (и меньше) по длине и 10-24 г (и меньше) по массе. И вот количественные отличия переходят в качественные (?? – А.Ч.). Другие масштабы ¾ другие законы движения совершенно иной по свойствам непривычный мир.

К сожалению, многие начинающие знакомиться с квантовой механикой пытаются инстинктивно со­противляться новым фактам (очень важное признание интуитивного протеста принципам квантовой механики. – А.Ч.), цепляясь за привычные старые образы из сво­его повседневного опыта, которые неприменимы в мик­ромире. Из этого ничего хорошего не может выйти.

Движение микрочастиц происходит иначе, чем мак­ротел, не в том смысле, что оно происходит по более сложной и запутанной траектории или является более быстрым. Оно просто не такое. Траектории, строго го­воря, вовсе нет. Сказать точно, где находится части­ца в данный момент, как правило, нельзя, так же как нельзя сказать точно, какова у нее в данный момент скорость. И дело здесь совсем не в ограниченных воз­можностях измерительной техники. Речь идет о глубо­кой, принципиальной невозможности утверждать, что частица находится в каком-то определенном месте и обладает при этом определенной скоростью. Зато мик­рочастица (например, электрон в атоме) имеет в один и тот же момент времени ненулевые вероятности движе­ния в двух противоположных направлениях (со скоро­стями, например, v и- v).

В микромире нельзя достоверно указать, в какой точ­ке находится частица. В один и тот же момент време­ни вероятность нахождения микрочастицы в разных местах не равна нулю. Взамен координат, скоростей, траекторий частиц в законах микромира приходится иметь дело с «облаками», или полями, вероятности на­блюдения на опыте тех или иных значений координат, скоростей или других величин, характеризующих час­тицу. Поле вероятности характеризуется так называе­мой пси-функцией y (x, y, z, t), зависящей от координат и времени. Величина y (x, y, z, t)называется амплитудой ве­роятности наблюдения частицы в точке с координатами х, у, z в момент времени t. Пси-функцию еще называют волновой функцией. Волновая функция записывается в комплексной форме, в то время как колеблющиеся ве­личины, характеризующие движение в макромире, все­гда вещественны.

И хотя на первый взгляд (и на второй тоже – А.Ч.)волновая функция кажется эфемерным понятием, она представляет собой слепок, модель сгусток информации (?? – А.Ч.) о природе. Волновая функция отражает реальные свойства материи, присущие ей на «глубинном уровне» микромира (?? – А.Ч.).

Из сказанного выше о специфике микромира не сле­дует делать вывод, что между микромиром и макроми­ром имеется непроницаемая граница, что одни физиче­ские объекты подчинены только законам микромира, а другие — только законам макромира. Одни и те же объ­екты (электроны, атомы, молекулы, кристаллы твердо­го тела) в одних отношениях ведут себя как объекты микромира, а в других — как макрообъекты. Все зави­сит от условий, в которых они находятся, и от точно­сти, с которой они исследуются. Чтобы пересечь гра­ницу между микромиром и макромиром в ту или другую сторону, надо оговорить надлежащим образом условия, в которых находится объект, и точность, с ко­торой он изучается (не значит ли это, что вся кванто­вая механика основана на некоторой искусственной конвенции.А. Ч.). И тогда электрон можно представить либо в ви­де «облака вероятности», движущегося в атоме по специфическим законам микромира, либо в виде «обыч­ной» частицы, движущейся по траектории, описывае­мой законами классической механики.

Открытие законов микромира произвело революци­онный переворот в физике, коренную ломку сложив­шихся веками физических представлений.

Но не все в микромире удалось пока понять до конца. Однако уже сейчас совершенно ясно, что основная суть дела понята правильно».

Соглашусь, что изложенная в цитате суть понята, но очень усомнюсь, что эта суть правильно отображает за­коны природы. Проанализирую некоторые факты, по­служившие основой приписывания (постулирования) природе столь не­обычного поведения в микромире, того поведения, которое декларирует квантовая механика, и покажу способы иного описания этого поведения. Начнем с бомбардировки атомов Резерфордом.

 

6.2. «Снаряды» Резерфорда

 

Не останавливаясь на теоретическом открытии Планком квантового излучения энергии телами и введении им постоянной действия h, положенной в дальнейшем в основу квантовой физики и хорошо известной, проана­лизирую несколько иначе, чем принято, эксперименты Резерфорда, связанные с определением строения атома. Именно они позволили Резерфорду обосновать гипотезу планетарной структуры атома при полном понимании противоречия данной модели законам электродинами­ки. (Как будет показано далее, это «противоречие» есть следствие ошибочного понимания свойств и явлений микромира.)

После открытия А. Беккерелем явления радиоактив­ного распада Резерфорд показал, что при этом выделя­ются a и b частицы и a -частица идентична дважды ио­низированному атому гелия. Последняя, вследствие огромной энергия движения, «пролетала сквозь атомы вещества, не испытывая значительного отклонения». И далее: «Из величины g/m и v для a-частиц легко рас­считать, что для изменения направления на уголдля некоторых частиц при прохождении имя слоя слюды толщиной 0, 003 см потребовалось бы поперечное элек­трическое поле напряженностью около 1000 млн В/см». Проверку возможности рассеяния a -частиц на большие углы в тонких металлических фольгах Резерфорд поручил Гейгеру [138]. И через некоторое время выясни­лось, что тонкая золотая фольга (0, 01 мм), установлен­ная на пути a -частицы, рассеивает их на углы 10°, 15°, 20%.... Но встречались случаи, когда a -частицы отбра­сывались пластинкой назад, отклоняясь от направления движения от 90° до 180° (рис. 72). Это было столь не­ожиданно, что Резерфорд в своих воспоминаниях на­звал явление невероятным: «Это было почти столь же невероятно, как если бы выстрелили 15-дюймовым сна­рядом в листок папиросной бумаги, а он вернулся бы назад и угодил в вас».

Факт рассеяния a -частиц с их отбрасыванием свиде­тельствовал, что в составе атома имеется массивное яд­ро, непроницаемое для a -частиц и размер его находился, как показали расчеты, в пределах 10-13 см (?). На основе данного расчета была предложена следующая интерпретация «рассеивания»:

Положительно заряженные a -частицы (представляе­мые как материальные точки без материальных свойств) летят прямолинейно по инерции в направлении массивной положительно заря­женной частицы (ядра), размерами которой тоже пре­небрегают. При подлете к ядру вследствие отталкива­ния между одноименно заряженными частицами, а- частица изменит направление своего движения на такой угол, который определяется энергией отталкивания за­рядов. Если же она «налетает» непосредственно на яд­ро, то еще до соударения, приблизившись на мини­мальное расстояние, отскочит обратно, рассеиваясь на угол j = 180°.

Поскольку возможность такого рассеивания редкость, можно полагать, что направление движения отстоит от прямой, проходящей через центр ядра на некотором расстоянии d (оно называется прицельным параметром), a -частицы рассеиваются на угол < 180°. На рис. 72 по­казаны орбиты a -частиц, пролетающих, по Резерфорду, мимо тяжелого ядра и получающих разные углы рассеивания. Слу­чайность направления движения по-ложитель­ных a -частиц отно- си­тельно положительного ядра приводила к появ­лению случайных углов рассеивания на подходе к ядру, что никак не могло проявляться в классической механике, поскольку гравивзаимодействия, как полагают, до сих пор ограни­чиваются взаимным притяжением.

Основная особенность данной картины в том что a-частицы считаются пас-сивными «снарядами» с оди-наковым зарядом, пролета-ющими без взаимодейст-вия, и потому по прямой линии, как в «пустом» прос- Рис. 72. тран­стве, так и в пространстве золота. Это была первая и основном ошибка в представлении механизма про­странственного движения и взаимодействия a-частиц с ядрами атомов, обусловленная переносом на структуру атома движения по инерции классиче­ской механики. Но именно она сформировала все даль­нейшие подходы, как к рассмотрению структуры ато­мов, так и к формализации законов квантовой ме­ханики.

Естественно, что представление о траектории a -час­тиц и их взаимодействиях изменится, если исходить из того, что a -частицы пульсируют и движутся, причем каждая со своей частотой и скоростью в пространстве эфирных молекул по синусоидальной траектории, оги­бая их ядра-сгущения и попадая в более плотную среду молекул твердого вещества (например, золота), изме­няют траекторию своего движения (рис. 73.) иначе, чем это показано на рис. 72. На рис. 73. отображается траек­тория движения активных a -частиц в пределах молеку­лы допустим, золота (напомню еще раз, что движение элементарных частиц в любом пространстве, включая эфирное, вне молекул или атомов, невозможно). Прежде всего, от­мечу, что все моле­кулы золота, как и любого другого ве­щества имеют различные размеры и неодинаковую плот­ность по всей той об­ласти, которую они образуют. Пульсация этих молекулот ядра, размеры и плот­ность тела ядра тоже раз-личны и только плотность в пределах нейтральной зоны для всех молекул одного вещества примерно одинаковая. Эта плот-ность и обусловливает, все свой- ства вещества.

Рис. 73.Траектории a -частиц внутри молекулы определяется индиви-дуальными свойствами каждой частицы и той скоростью, которую обеспечивают в эфире ее энергетические возможности (самопульсация). Поэтому a- ч астицы проходят через область молекул на различном расстоянии от ядра, и, естественно, что при этом движении происходит постоянное количественное измене­ние свойств частицы, включая ее плотность. Вот эти взаимодействия (так же, как и в классической механике) определяют угол отклонения (рассеивание) их ядром от направления своего движения. Чем ближе подходит a- частица к ядру, тем сильнее отклонение ее траектории.

Угол отклонения (рассеивания) a -частиц в кулоновском поле ядра определяется по формуле Резерфорда:

b = kctgj/ 2, (6.4¢)

где k = ZeE/Mc2, Z – заряд ядра, е – заряд частицы, Е – напряженность кулоновского поля ядра, М – масса ядра, с – скорость света, j – угол отклонения частицы.

Формула (6.4') указывает только на то, что a-частицы, пролетая около ядра, отклоняются его кулоновским полем. Из нее не следует, что это откло­ нение является только отталкиванием. Одинаково вероятны и отталкивание и притяжение. Но в природе реализует­ся только одно действие — либо отталкивание, либо притяжение. Резерфорд, ориентируясь на то, что заряды ядра и a -частицы положительны, выбрал отталкивание, отскок. И ошибся. Отклонение это не носит харак­тера отскока, а является движением по гиперболи­ческой или параболической траектории как к ядру так и вокруг него. П римерно таким же, как и траектория комет «проры­вающихся» к Солнцу из очень отдаленных глубин кос­моса.

На рис. 73 изображена граница атома эфира и моле­кула золота с ядром, траектория движения a -частиц в молекуле золота. Траектория движения частиц в молекуле и механизм их рассеивания отличаются от предпо­лагаемых (рис. 72), но наблюдаемые структуры рассеи­вания частиц вне молекул будут аналогичными. То есть на сегодня нет способов эмпирически отличить траектории друг от друга. Другое отличие заключается в том, что a - частицы, как и электроны, не несут никакого заряда и двигаются не по инерции, а за счет взаимо­действия с электромагнитным (пульсирующим) полем сначала молекул эфира, а затем молекулярного про­странства золота, которое деформирует каждую частицу в зависимости от количественной величины ее свойств. Именно расстояние от ядра и процесс дефор­мации a-частицы на входе в молекулу и раздеформации на выходе обусловливают величину угла отклонения частицы от направления первоначального движения.

Таким образом физический процесс рассеивания a-частиц на атомах не является подобием процесса отскакивания снарядов от стенки, как это было интер­претировано Резерфордом, а есть следствие взаимо­действия движущихся элементарных частиц с изме­няемым пространством тех тел, в которых они двигаются. Эта как бы незначительная и естественная ошибка Резерфорда и послужила отправным пунктом последующего построения математического аппарата квантовой механики. Именно она оказалась прообразом рассуждения о падении электронов на ядро и мысли­мых экспериментов с пулями-электронами, например, «пулемета» Фейнмана, уводивших физиков все дальше и дальше от понимания природы микромира. Надо от­метить также, что дополнительную лепту в некоррект­ное понимание процессов микромира внесло и постули­рование постоянства скорости света, и «изгнание» эфира из физических представлений, и провозглашение неизменности массы и заряда электрона, и... некоторые другие факторы, вошедшие в физику еще до начала раз­работки квантовой механики. О них будет упомянуто да­лее.

 

6.3. «Квантовые истины»

 

Итак, эксперименты Резерфорда могут быть объясне­ны иначе, чем это объяснял сам Резерфорд. И кажется, что отличие в объяснениях незначительно. И в том и в другом случае имеет место рассеяние, и в том и в дру­гом случае ядра двигаются в пространстве к ядру и от­клоняются от траектории движения на один и тот же угол в полном соответствии с предсказаниями теории (формула Резерфорда). И все же появилось первое не­понимание природы движения элементарных частиц в атоме, заключающееся в том, что a-частицы движущиеся в атомах эфира и молекулах тел не отскакива­ют от ядра, а огибают его по орбите (как и электро­ны) и вылетают наружу почти под тем же углом, под которым влетали в пространство атома. Исходя из ошибочного объяснения движения элементарных час­тиц в пространстве все больше и больше особенностей механики элементарных частиц понималось в противо­речии с их физической сущностью. Немалую роль в этом процессе сыграло и постулирование отсутствия эфирного пространства, провозглашенного пустотой, и перенесение инерциального движения классической механики на движение элементарных частиц в микро- мире. Именно инерциальное движение электронов по орбите вокруг ядра без излучения энергии противоречило законам электродинамики. Именно оно «застави­ло» Бора, сохраняя планетарную модель Резерфорда, сделать второй ошибочный шаг и сформулировать знаменитые постулаты, которые повернули объяснение явлений микромира на путь вероятностного толкования, на путь, обусловивший в итоге резкое отличие формулируемых законов микромира от законов класси­ческой механики, что превратило микромир в хаос ве­роятностных взаимодействий. Так в науку начало входить множество необычных квантовых явлений, которые можно назвать «кванто­выми истинами». Истины эти для современных ученых непоколебимы и потому — вечны. Попробую показать, что для объяснения этих явлений нет необходимости в применении «квантовых законов», все они, намного проще и нагляднее, описываются законами классиче­ской механики. Приведу постулаты, введенные Н. Бором в 1913 году, которые запрещали электрону излучение при движении по определенным орбитам в планетарной модели атома. Эти постулаты, являясь второй ошибкой в объяснении природы микромира, и открывают счет квантовым истинам. Вот как обосновывал Н. Бop необходимость в данных постулатах [139]: «.... мы приходим к выводу, что эти конфигурации со­ответствуют состояниям системы, в которой нет излучения энергии, а потому они будут стационарными, по­ка система не будет возмущена извне».







Дата добавления: 2014-10-29; просмотров: 588. Нарушение авторских прав; Мы поможем в написании вашей работы!



Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...

Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...

Логические цифровые микросхемы Более сложные элементы цифровой схемотехники (триггеры, мультиплексоры, декодеры и т.д.) не имеют...

Типовые ситуационные задачи. Задача 1.У больного А., 20 лет, с детства отмечается повышенное АД, уровень которого в настоящее время составляет 180-200/110-120 мм рт Задача 1.У больного А., 20 лет, с детства отмечается повышенное АД, уровень которого в настоящее время составляет 180-200/110-120 мм рт. ст. Влияние психоэмоциональных факторов отсутствует. Колебаний АД практически нет. Головной боли нет. Нормализовать...

Эндоскопическая диагностика язвенной болезни желудка, гастрита, опухоли Хронический гастрит - понятие клинико-анатомическое, характеризующееся определенными патоморфологическими изменениями слизистой оболочки желудка - неспецифическим воспалительным процессом...

Признаки классификации безопасности Можно выделить следующие признаки классификации безопасности. 1. По признаку масштабности принято различать следующие относительно самостоятельные геополитические уровни и виды безопасности. 1.1. Международная безопасность (глобальная и...

Билиодигестивные анастомозы Показания для наложения билиодигестивных анастомозов: 1. нарушения проходимости терминального отдела холедоха при доброкачественной патологии (стенозы и стриктуры холедоха) 2. опухоли большого дуоденального сосочка...

Сосудистый шов (ручной Карреля, механический шов). Операции при ранениях крупных сосудов 1912 г., Каррель – впервые предложил методику сосудистого шва. Сосудистый шов применяется для восстановления магистрального кровотока при лечении...

Трамадол (Маброн, Плазадол, Трамал, Трамалин) Групповая принадлежность · Наркотический анальгетик со смешанным механизмом действия, агонист опиоидных рецепторов...

Studopedia.info - Студопедия - 2014-2024 год . (0.009 сек.) русская версия | украинская версия