Студопедия — Третье началоКТД известно как теорема Нернста [121,122], следствием которой является так называемый принцип недостижимости нуля абсолютной темпе­ратуры. 13 страница
Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Третье началоКТД известно как теорема Нернста [121,122], следствием которой является так называемый принцип недостижимости нуля абсолютной темпе­ратуры. 13 страница






Из столбца 3 табл. 38 следует вывод о том, что линей­ная скорость вращения гравиполей тел, находящихся на орбитах вокруг Солнца, должна примерно на порядок превышать скорость вращения его гравиполя. И возни­кает вопрос: А сохраняется ли эта пропорция для спут­ников планет, особенно у тех из них, у которых размеры спутников имеют «солидный» разброс по величине ра­диуса. Рассчитаем скорости гравиполей v2 у поверхно­стей спутников Юпитера и занесем их в табл. 39.

     

Таблица 39

    v2 rсп/lор
       
  Юпитер 1, 364·108  
  Амальтея 4, 073·109 4, 420·10-4
  Ио 8, 746·108 4, 121·10-3
  Европа 9, 253·108 2, 310·10-3
  Ганнимед 7, 286·108 2, 336·10-3
  Каллисто 7, 515·108 1, 248·10-3
  Атлас 4, 703·109 5, 263·10-6
  Прометей 1, 487·1010 5, 124·10-6
  Геракл 8, 139·109 1, 709·10-6
  Гефес 1, 553·1010 2, 657·10-7
  Дедал 1, 330·1010 3, 355·10-7
  Прозерпина 1, 553·1010 2, 300·10-7
  Цербер 1, 377·1010 2, 953·10-7

Получается так, что линейная скорость вращения гравиполей малых спутников Юпитера приближается к скорости света, к скорости, которую электроны в естест­венных условиях достигают только внутри атомов и мо­лекул либо в искусственных условиях в синхрофазотро­не и, следовательно, надо ожидать, что и плотность пространства в камере синхрофазотрона соответствует плотности у поверхности этих «камешков»-спутников.

Отмечу, что интересная «случайность» (?) наблюдает­ся в отношении приповерхностной скорости вращения гравиполя Земли v'1 = 7, 91·105 см/с к аналогичной элек­тромагнитной скорости ее же v2 = 4, 562·108 см/с. Если вторую разделить на первую, то получим:

v2/v1' = 4, 562·108/7, 91·105 = 576.

Безразмерное число 576 можно записать в виде; 576 = 4pa/3, где a ≈ a' = 137, 5 > 137, 04 всего на 0, 3%. Если учесть, что a - постоянная тонкой структуры в кванто­вой механике и вспомнить, что 4 pa - нижняя граница трехмерности, то это достаточно странное и вызываю­щее много вопросов совпадение. Но вернемся к Земле. Попробуем промоделировать качественно, как «разбе­гаются» волны в пространстве от пульсирующей Земли. Отметим, чтоРис. 85. длина волны, амплитуда и частота, но не фаза, от Солнца и от Земли, полученные по инварианту (2.29) длины волн l, будут иметь в либрационной точке одинаковую величину. По этому же инварианту длина волны и амплитуда от Солнца и Земли на середине рас­стояния между ними тоже оказываются одинаковой ве­личины. И чтобы Солнце и Земля не притягивали и не отталкивали друг друга, достаточно, чтобы их амплиту­ды совпадали по величине и фазе, но имели разный знак, т.е. силы F1 = F1' обусловленные волнами, взаимно по­гашались (рис. 85). Это обстоятельство и обеспечивает Земле устойчивое положение на орбите.

Волна, вызываемая самопульсацией Земли, объемна. Ее часть, идущая в сторону от Солнца (в направлении F3), будет давать Земле дополнительный импульс, «прижимая» ее к Солнцу. Такой же импульс она получа­ет и от волн, движущихся по направлению ее движения по орбите и против этого направления. То есть с двух сторон по орбите возникают одинаковые взаимопогашающие силы F2 = F4, и, следовательно, Земля тоже должна оставаться на месте.

Это в случае ее неподвиж­ности относительно Солнца. В случае ее движения энер­гия волн самопульсации по направлению движения боль­ше, чем поперек его. Но и в этом случае сила F1, обра­зуемая по направлению дви­жения, равна силе F4 , на­правленной в противопо­ложную сторону. А потому кажется, даже без учета со­протии-вления эфира, что пла­нета не может двигаться за счет отталкивания от про­странства. И все же она дви­жется. Более того, образует в направлении движения впереди «себя», как уже упоминалось, бегущую удар­ную сфе- Рис. 86. рическую волну, «сминающую» и уплотняю­щую эфирное пространство перед движущимся телом и замедляя течение времени в уплотнённом пространстве. (Образуя своего рода сферическую стенку плотности.). Похоже, что это «смятое» вещественное пространство и становится основным элементом, обеспечивающим движение небесного тела в пространстве. Плотность «ударной» волны оказывается такой величины, что становится непреодолимой для набегающей на нее от тела (Земли, в частности) электромагнитной волны самопульсации. Более того, набежавшая волна этой сферической стенкой полностью отражается и с «фо­кусировкой» «возвращается» в сторону Земли. Отра­женная волна с двойной силой воздействует на сфери­ческое «зеркало», уплотняя «тело» последней и обеспе­чивая ее дальнейшее, как бы независимое от планеты, движение (рис. 86).

В свою очередь отра­женная космическим «зер­калом» электромагнитная волна возвращается к телу (к поверхности Земли), имея те же параметры, что и движущаяся ей на­встречу волна самопульса­ции.

В результате на всем пространстве от «зерка­ла» до Земли образуются стоячие волны, обусловли­вающие притяжение Зем­ли к «зеркалу» и «зеркала» к Земле. Сила F2 оказывается скомпенсированной этим притяжениеми все образование ¾ глобула вместе с планетой ¾ движется под действием сил F4 и F2 по орбите вокруг Солнца, и это движение поддерживается увеличением скорости течения времени сзади неё в области разряжения. Об­разуется совершенно необычная природная конструк­ция типа тяни-толкай, в которой компенсация одного волнового усилия обеспечивает превращение отталки­вающей силы в силу толкающую. Вот почему вещественное пространство не тормозит са­модвижение тел в своей среде. На рис. 86. изображена примерная схема появления эфирного «зеркала» перед движущейся планетой.

Поскольку нам неизвестны параметры сжатия и раз­ряжения движущейся волны, а известно только измене­ние плотности пространства Солнечной системы, попробуем, ориентируясь на эти изменения, определить приблизительную картину взаимодействия и место воз­можного образования эфирного «зеркала», например, для нашей планеты. Прежде всего отметим, что зона одинаковой плотности эфирного пространства от Солн­ца и Земли, при положении последней в точке А, прохо­дит по линии BE, причем ОВ = ВА. При движении пла­неты по орбите дуга ВСД перемещается пропорцио­нально изменению угла ВОВ', но не пропорционально плотности пространства. Похоже, что именно эта дуга и образует сферическое эфирное «зеркало». Параметры «зеркала» определяются изменением плотности от нее до планеты. И вогнутая сфера ударной плотности долж­на отстоять всеми своими точками на таком расстоянии от поверхности планеты, которое обеспечивает одина­ковое количественное изменение скорости и параметров волн как при движении их от планеты, так и в обратном направлении. Отмечу, что процесс движения электриче­ских волн по направлению и против направления полета планеты по орбите в значительной степени определяется эффектом Доплера.

По-видимому, данный механизм обеспечивает движе­ние всех тел от элементарных частиц до галактик и да­лее как вглубь, так и наружу, а также тел, обретающих движение в результате различных естественных или ис­кусственных процессов. Поэтому все тела движутся в пространстве по таким траекториям, которые обуслов­ливают им их энергетические возможности, проявляю­щиеся в параметрах самопульсации и энергии пространства, в котором они движутся.

На сегодня никаких параметров «зеркала» от электро­магнитных волн от планет и изменения эфирной плот­ности пространства эмпирически не обнаружено, а тео­ретически их и не может быть. Однако некоторые косвенные достоверные данные свидетельствуют о су­ществовании «зеркала». Например, об этом свидетель­ствуют так называемые «скачкообразные» «негравитаци­оные» изменения кометных орбит, не имеющие естественного объяснения. Или наблюдаемое иногда как бы беспричинное деление кометного ядра. И, наконец, конфигурация ядра кометы, светящаяся часть которой достигает сотен тысяч и даже миллионов километров (какова невидимая, уплотненная ударной волной часть пространства перед головой кометы, сказать, пока ещё, не­возможно).

Надо отметить еще одну возможность эксперимен­тального обнаружения эфирного «зеркала», образующе­гося по орбите перед планетой. Оно, это эфирное уплот­нение, является некоторым подобием гравитационной линзы, правда, достаточно слабой. И все же свет от звезд, проходящий через вогнутости «зеркала» вблизи касательной к уплотнению или через него, будет немно­го отклоняться от прямолинейного направления, «раз­двигая» или «сдвигая» изображения звезд на фотогра­фиях, по-видимому, в пределах 0, 05-0, 1%. Это, конечно, незначительные и достаточно незаметные отклонения, но все же их можно обнаружить современными фото­метрическими методами. Естественно, что наибольшее отклонение может наблюдаться при прохождении лучей через эфирное «зеркало» Меркурия или Венеры, по­скольку они имеют наибольшую орбитальную скорость, да и плотность эфирного пространства в районе, напри­мер, орбиты Меркурия на порядок выше, чем даже на орбите Земли или Марса (табл. 33).

 

7.5. Магнитные параметры планет и спин

 

Ранее было получена атомная структура Солнечной системы, в которой функции электронов выполняют планеты, а вокруг планет их спутники. Известно также, что электроны атомов обладают не только механиче­скими свойствами, но и магнитными, и естественно бы­ло бы задаться вопросом: А обладают ли магнитными свойствами, например, планеты-электроны и какова зависимость между электрическими и магнитными свой­ствами в Солнечной системе?

Поскольку планета-электрон вращается по орбите во­круг ядра Солнца в замкнутом контуре, то в соответст­вии с законами электродинамики вдоль ее движения должен возникать электрический ток. Магнитные свой­ства замкнутого контура с током обусловливаются маг­нитным моментом Рт:

Pm = IS = Ipr2, (7.10)

где I = ev - сила тока, S - площадь орбитального кон­тура. Среднюю скорость движения планеты-электрона по орбите можно представить в виде v = 2 prw и, преобра­зовав относительно v и подставив в (7.10), получим уравнение:

Pm = evr/ 2, (7.11)

где Рт - называется орбитальным магнитным моментом.

Подставим в (7.10)параметры планеты Земля и получим ее орбитальный магнитный момент Рm = 1, 516·1059. На рис. 87 изображена схема планеты, вращающейся вокруг Солнца против часовой стрелки, если смотреть сверху, и ее орбитальный магнитный момент, согласно электродинамике, имеет направление вниз.

Кроме электрического заряда, как показано выше, глобула-электрон обладает массой и потому при ее дви­жении по орбите возникает механический орбитальный момент количества движения L. Он, как известно, равен:

L = mvr. (7.12)

Подставляем числа параметров в (7.12) и получаем ве­личину орбитального количества движения L = 1, 646·1059.

Отношение моментов Pm/L называется гиромагнит­ным отношением и обозначается через f. Определим его:

f = Pm/L = evr/ 2 mvr = e/ 2 m = 0, 921.

Ровно в два раза меньше удельного заряда из таблицы 37 столбец 9. То есть можно констатировать, что гиро­магнитное отноше- Рис.87. ние есть половина удельного заряда электрона глобулы Земли.

Если предположить, что Земля представляет собой электрон, движущийся в однородном магнитном поле перпендикулярно его силовым линиям, то можно опре­делить магнитную индукцию В электрона по формуле:

F = evB. (7.13)

Поскольку сила, получаемая из (7.13), уравновешива­ется, как полагают, центробежной силой

F1= mv2/R, (7.14)

и F1 = F, то, приравнивая правые части (7.13), (7.14) и решая получившееся уравнение относительно магнит­ной индукции, находим величину В для Земли-электрона:

В = mv2/eRv= mv/el= 3, 917·1025·2, 989·10 /7, 214·1025·l, 496·1013 = 1, 084·10-7.

Поскольку Земля-электрон движется в электрическом поле Солнца ЕС равном:

Ес = ec/l2 = 2, 756·1026/(1, 496·1013)2 = 1, 231,

то можно получить силу Лорентца Fл.

Fл = еЕс + evB = 1, 231·7, 214·1025 + 7, 214·1025·2, 989·10б·1, 084·10-7 =

= 8, 884·1025 + 2, 337·1025 = 1, 122·1026.

Таким образом, оказывается, что движение планет Солнечной системы можно описывать и в терминах ме­ханики, и в терминах электродинамики, и в терминах квантовой механики. Эти возможности еще раз демон­стрируют надуманность так называемых квантовых за­конов, искусственность и усложненность математиче­ского аппарата, описывающего несуществующие зако­ны, закономерное появление вероятностного истолко­вания их и, как следствие, демонстративное отсутствие наглядности в описании квантовых явлений. Попробуем разобраться, имея весь спектр физических понятий, чем же является для модели атома ¾ Солнечной системы ¾ такое физически не представимое в квантовой механике явление, как спин электрона.

Прежде всего, отмечу, что момент импульса L описывается в квантовой механике формулой:

L = 2 h Ö [ l (l + 1)],

где l - орбитальное квантовое число, принимающее зна­чение l = 0, 1, 2, 3,.... (Рассмотрение состояний s, p, d,... и т.д. опускаю за ненадобностью в настоящем изложе­нии.)

Здесь очень важно то обстоятельство, что орбитальное число может быть равно l = 0, а, следовательно, в кван­товой механике может возникнуть ситуация, когда момент импульса L отсутствует. Для структуры модели атома «Солнечная система» это равнозначно тому, что в процессе движения Земли по орбите случается ситуация, когда она со своей орбиты, да и вообще из Солнечной системы, исчезает куда-то, а затем опять появляется не­известно откуда (не переходит с орбиты на орбиту, а как бы «испаряется» и вновь «конденсируется» в своем не­изменном естестве). Это, конечно, оригинально, но вряд ли правдоподобно. Одно это обстоятельство ставит под сомнение существование орбитального квантового чис­ла l. Тем не менее, следом за l появляется магнитное квантовое число с тем же свойством тl = 0, ± 1, ± 2, ±3,... ± l. Причем одному значению орбитального квантового числа l (определенной величине момента импульса) со­ответствует 2 l + 1 значений магнитного квантового чис­ла (которое тоже может иметь величину ml = 0, с теми же последствиями). И все это великолепие квантовых чисел необходимо для того, чтобы получить различные дискретные направления вектора момента импульса, со­вершенно ненужные, например, в описании структуры атома Солнечной системы. Покажу, опуская вывод уравнения, это на примере сопоставления значений «по­стоянной» квантовой механики — магнетона Бора тб:

mб = mб = eħ / 2 m = f/ 2. (7.15)

Отмечу, что магнетон Бора µб, не может быть величи­ной постоянной, поскольку его КФР не равен 1: / µб = 3-1·1/3-2 = 2-1. Следовательно, количественная величина магнетона, аналогичного магнетону Бора для планет Солнечной системы, тоже не может быть постоянной. (Об этом же свидетельствует и правая часть уравнения (7.15), параметр f не может быть const.)

Мимоходом отмечу, что магнетон Бора иногда назы­вают «атомом электричества» [158], что неудачно и способствует тер-минологической путанице. Теперь перейду к понятию «спин».

Сначала отметим, что слово «to spin» в переводе с анг­лийского означает прясть, вертеть. Его появление в квантовой механике обусловлено тем, что, объясняя не­которые эмпирические эффекты, Д. Уленбек и С. Гаудсмит приписали электрону собственные магнитный и механический моменты, представляя электрон в виде заряженной сферы определенного радиуса, вращающегося вокруг своей оси. При таком вращении сам электрон об­разует совокупность круговых токов и потому обладает магнитным моментом, а как протяженное тело, имею­щее массу, обладает механическим моментом. То есть здесь отображается полная аналогия с вращающимся вокруг своей оси вещественным шариком. Однако очень скоро от модели вращающегося шарика пришлось отка­заться по следующим обстоятельствам [148]:

• в модели отношение магнитного момента к электри­ческому совпадает с гиромагнитным отношением. Из опытов следовало, что гиромагнитное отношение для собственного момента в два раза больше, чем орбиталь­ное;

• если рассматривать классический радиус электрона rе = 2, 83·10-13 см (выше было показано, что эта величина никакого отношения к радиусу электрона не имеет), то при значении момента Ms = Ö 3 ħ /2, следующего из экспе­римента, точка на поверхности электрона должна была двигаться со сверхсветовой скоростью v = 4, 13·1012 см/с.

Последнее противоречило постулату о постоянстве скорости света и стало запретном для вращения элек­трона с такой скоростью. Возобладал не эксперимент, а постулат. [Подчеркну, что данный постулат возобладал над здравым смыслом вообще во всей физике, ибо, как уже неоднократно отмечалось, одним утверждением постулируется одновременно с абсолютностью скоро­сти света изотропность и невещественность про­странства (его пустоту), в котором свет движется по инерции (то есть без взаимодействия, поскольку взаи­модействовать не с чем) соразмерность расстояний, проходимых им в пустоте (соразмерность чему??) за единицу времени и абсолютность (??) самого времени. Более того, само логическое понятие «пустота» свидетельствует о том, что все отсутствует, что перед нами ничто, которое ничего содержать не может по определению. Т.е. качество, не имеющее отношения к физике. И появление в нем чего-то, означает изменение качества – отсутствие пустоты. К сожалению, современная физика игнорирует категорию качество.[59]. Абсолютность скорости света ¾ очень оригинальный и универсальный постулат. Переосмысливание его одного достаточно, чтобы пустить под откос всю современную теоретическую физику.]

Если же электрон увеличить до размеров планеты, то предлагаемые причины отсутствия самовращения у них отпадают сами собой, тем более, что самовращение у всех планет имеется и не только механическое, но, похоже, хотя и не видимое, электрическое v2 (табл. 38), и видимо, именно это вращение — вращение электромаг­нитного поля (а не точки на поверхности электрона или планеты) — отображает наличие «исковерканного» спина в кванто­вой механике. Посмотрим, какую величину имеет меха­нический момент электрона-планеты при учете линей­ной скорости вращения электромагнитного поля у поверхности планет, например Земли и Юпитера, ис­пользуя массу этих планет Мз, их радиус и скорость вращения электромагнитного поля v (еще раз отмечу, что это электромагнитное вращение нашими приборами не фиксируется, если не считать приборами космиче­ские аппараты, и в данной работе получается в результа­те теоретического расчета):

MЗRЗv = 5, 98·1027·6, 371 108·4, 562·108 = 1, 74·1045 = ħ сc.

МЮRЮv = 1, 794·1027·7, 13·109·1, 364·108 = 1, 74·1045 = ħ сc,

где ħ сс - постоянная Солнечной системы.

Вырисовывается совершенно необычная картина. Собствен-ный механический момент планеты-электрона оказывается равным собственному механическому мо­менту глобулы. Более того, он оказывается одинаковым для всех планет и для Солнца. И, следовательно, на лю­бой орбите вокруг Солнца могут находиться только такие тела-электроны, произведение параметров М, R и v2 которых образует квант Солнечной системы ħ сс. Похоже, что главное в квантовой механике не кванто­вание орбит и других параметров (они не квантуются), а квантованная зависимость параметров тел-планет. Именно это квантование определяет всю совокупность взаимодействий между телами звездных систем и анало­гичными телами в молекулах и атомах. А место на ор­бите «регулируется», вероятно, гиромагнитным отно­шением собственного магнитного момента тела планеты-электрона к ее же механическому моменту. Это отношение, скорее всего, пропорционально пульса­ции или вращению гравитационного или электромаг­нитного полей небесных тел.

Отсюда также следует, что вращение собственного электромагнитного поля планеты обусловливает суще­ствование и механического, и магнитного орбитальных моментов ее тела. И любые изменения внешнего (солнечного или галактического) гравитационного или маг­нитного полей, изменяющих соответствующие напря­жения в глобуле планеты, будут с неизбежностью из­менять направление оси вращения планеты от нескольких градусов до 180°. То есть до перемены ее географических полюсов. Такое изменение способно «выбить» из планеты «отдельные» образования (эфирогравиболиды [33]), переместив ее с одной орбиты на другую и, более того, может просто «выкинуть» планету из глобулы, как бы отправив ее подальше от Солнца в «самостоятельное» путешествие в эфирном космиче­ском пространстве.

Зная об этом, посмотрим, какую же величину имеют собственные магнитные моменты планет-электронов?

Рт = envnrn/ 2. (7.16)

Уравнение (7.16) - стандартное для вычисления соб­ственного магнитного момента элементарных частиц. Используя его, вычислим магнитный момент тел Юпи­тера и Земли:

PmЗ = еЗvЗ RЗ / 2 = 1, 542·1024·6, 371·108·4, 562·108 = 2, 241041,

P = eЮvЮRЮ/ 2 = 1, 537·1025·7, 13·109·1, 364·108 = 7, 474·1042.

Проведем расчеты для остальных планет и занесем ре­зультаты в табл. 38столбец 7. Пример определения маг­нитного момента тел планет Земли и Юпитера показы­вает, что их магнитные моменты, в отличие от меха­нических, значительно различаются, поскольку вызыва­ются значительным расхождением величин грави­тационных коэффициентов G и удельного заряда f (табл. 37, столбцы 8, 9). Отсюда становится понятным, что при рассмотрении пропорций их орбитального, механиче­ского и магнитного моментов в квантовой механике ис­пользовались несопоставимые параметры: собствен­ный механический момент тела-электрона с магнит­ным орбитальным моментом его глобулы. Большой беды это не приносило, но путаницу физического понимания процесса увеличивало.

Таким образом, количественные величины магнитного и механического моментов тела планеты могут оказаться теми факторами, отношение между которыми регу­лирует расстояние планеты от Солнца и положение ее на орбите. Следовательно, изменение собственных пара­метров тела планеты, ее разрастание изнутри с измене­нием плотностной мерности по радиусу могут привести к выделению из трехмерного пространства планеты ее четырехмерной составляющей — эфироболида [33]. По­следний, покидая Солнечную систему, вызывает изме­нение плотности параметров планеты и, следовательно, обусловливает «заталкивание» ее напряженностью гравиполя Солнца на более близкую орбиту. Зная уравне­ние (7.24), можно, применяя его к планетарным систе­мам и в частности к Земле, рассмотреть, какие изменения могут произойти с планетой в том случае, ес­ли случится выброс большого эфирогравиболида, спо­собного «переместить» планету на орбиту ближе к Солнцу.

 

7.6. О возможности планетарных излучений

 

Русская механика, в отличие от остальных механик, описывает природу как структурированное образование, в котором взаимосвязи всех тел и на уровне Вселенной, и на уровне макромира, и на уровне микромира строго синхронизованы (например, как синхронизованы взаи­мосвязи внутренних органов человеческого тела). Каж­дое тело занимает то положение в пространстве, которое обусловлено его параметрами и энергетическим потен­циалом. Случайное (не связанное с его энергетическими возможностями) нахождение тел в том или другом мес­те, например Солнечной системы, исключается. Если в классической механике на любых орбитах вокруг Солн­ца могут находиться планеты любого размера и массы (конечно, имеющие массу на порядки меньше его), то в русской механике все тела на орбитах имеют строго пропорциональную структуру, и знание количественной величины одного параметра всех планет (например, ра­диуса) и массы одной планеты (например, Земли) доста­точно для нахождения масс остальных планет по инва­рианту Rm2. Покажу это на примере Юпитера (Rю = 7, 13·109 см) и Солнца (Rc = 6, 97·1010 см). Находим инва­риант по радиусу R3 и массе М3:

RM2 = 2, 28·1064. (7.17)

Решаем инвариант относительно масс Солнца и Юпи­тера:

Мс = Ö (2, 28 ·1064/6, 96·1010) = 5, 73·1026,

Mю = Ö (2, 28·10б4/7, 13·109) = 1, 79·1027.

Масса Солнца, полученная по инварианту (7.17) равна Мс = 5, 73·1026 г, а Юпитера Мю = 1, 79·1027 г. И именно такие параметры имеют данные планеты в таблице 33, столбец 6.

Посмотрим, а наблюдаются ли закономерности в от­ношениях радиусов планет и спутников к радиусам сво­их орбит. То есть, верно ли предположение классиче­ской механики о случайных размерах планет и их орбит. Рассчитаем эти пропорции, и результат по планетам за­несем в таблицу 38 столбец 6, по спутникам планеты Юпитера ¾ в таблицу 39, планет Сатурна, Урана и Неп­туна в таблицу 40.

Прежде всего отмечу, что приведенное расстояние (промежутки между нумерованными орбитами) у каж­дой из планет, как и у спутников, — свои. Но у Юпитера они ограничивается 26 потенциальными орбитами, у Са­турна и Нептуна ¾ 23 и у Урана ¾ 15 орбитами (опреде­ленных по объемному коэффициенту). Если по величине этой пропорции рассматривать планеты (таблица 38 столбец 6), то у них не отмечается никаких резких пере­ходов от одной орбиты к другой. Разница в отношениях радиусов крайних планет к радиусам своих орбит нахо­дится в пределах порядка.

При анализе же планетарных систем в отношениях ра­диусов спутников к радиусам орбит у всех трех планет ¾ Юпитера,

Таблица 40

Спутники R, км l, тыс. км. R/l № орбиты
Сатурна        
Янус     0, 9434·10-3  
Мимас     1, 450·10-3  
Энцелад     1, 260·10-3  
Тефия     1, 695·10-3  
Диона     1, 273·10-3  
Рея     1, 233·10-3  
Титан     1, 997·10-4  
Геперион     1, 483·10-4  
Япет     1, 545·10-4  
Феба     9, 266·10-4  
Урана        
Миранда     0, 9231·10-3  
Ариель     1, 823·10-3  
Умбриэль     9, 363·10-3  
Титания     1, 141·10-3  
Оберон     7, 679·10-4  
Нептуна        
Тритон     5, 352·10-3  
Нереида     2, 157·10-5  

Сатурна и Нептуна, имеющих по 23 потенци­альной орбиты, явно имеется скачок на два порядка в системах Сатурна и Нептуна и на три порядка в системе Юпитера. Скачок показывает, что:







Дата добавления: 2014-10-29; просмотров: 569. Нарушение авторских прав; Мы поможем в написании вашей работы!



Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...

Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...

Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...

Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...

Тема 5. Анализ количественного и качественного состава персонала Персонал является одним из важнейших факторов в организации. Его состояние и эффективное использование прямо влияет на конечные результаты хозяйственной деятельности организации.

Билет №7 (1 вопрос) Язык как средство общения и форма существования национальной культуры. Русский литературный язык как нормированная и обработанная форма общенародного языка Важнейшая функция языка - коммуникативная функция, т.е. функция общения Язык представлен в двух своих разновидностях...

Патристика и схоластика как этап в средневековой философии Основной задачей теологии является толкование Священного писания, доказательство существования Бога и формулировка догматов Церкви...

Тактика действий нарядов полиции по предупреждению и пресечению правонарушений при проведении массовых мероприятий К особенностям проведения массовых мероприятий и факторам, влияющим на охрану общественного порядка и обеспечение общественной безопасности, можно отнести значительное количество субъектов, принимающих участие в их подготовке и проведении...

Тактические действия нарядов полиции по предупреждению и пресечению групповых нарушений общественного порядка и массовых беспорядков В целях предупреждения разрастания групповых нарушений общественного порядка (далееГНОП) в массовые беспорядки подразделения (наряды) полиции осуществляют следующие мероприятия...

Механизм действия гормонов а) Цитозольный механизм действия гормонов. По цитозольному механизму действуют гормоны 1 группы...

Studopedia.info - Студопедия - 2014-2024 год . (0.011 сек.) русская версия | украинская версия