Студопедия Главная Случайная страница Задать вопрос

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

УДК 62-822





ЛАБОРАТОРНЫЙ ПРАКТИКУМ ПО МЕХАНИКЕ

Методические указания к лабораторным работам

по курсу общей физики

Для студентов всех специальностей

 

 

Формат 62´84/16 Объем 61/8 п.л. Гарнитура «Times New Roman»

Печать трафаретная Подписано в печать 23.10.2002 Тираж 400 экз.

Заказ № ХХХХ

 

Сургутский государственный университет

626400, Россия, Ханты-Мансийский автономный округ,
г. Сургут, пр. Ленина, 1.

Тел. (3462) 76-29-00, факс 76-29-29

 

Отпечатано полиграфическим отделом СурГУ

ул. Лермонтова, 5.

Тел. (3462) 32-33-05

 

Лицензия на издательскую деятельность ЛР № 071409 от 6 марта 1997 г.

 

Пособие для учащихся

 

Механика

Киров

 

УДК 531 (075.3)

ББК 22.33+74.202

С 17

 

Печатается по решению редакционно-издательского совета Лицея естественных наук г. Кирова

 

 

Пособие представляет собой сборник задач по всем темам школьного курса механики, в который включены вопросы и задачи различной степени сложности. Большинство задач заимствовано автором из известных сборников задач, из материалов ЕГЭ, а также из пособий для подготовки к вступительным экзаменам по физике в вузы. Часть задач являются авторскими. Пособие не заменяет программные задачники (авторы: А. П. Рымкевич, Г. Н. Степанова и другие), а дополняет их.

Пособие предназначено для работы на уроках и факультативных занятиях с учащимися Лицея естественных наук

 

 

Рецензент: К. А. Коханов, кандидат педагогических наук, доцент кафедры дидактики физики Вятского государственного гуманитарного университета, заместитель заведующего кафедрой дидактики физики.

 

 

С 17. Самарин Г.Г. Задачи по физике: пособие для учащихся: [Механика] [Текст].– Киров: ЦОП «Градиент», 2009. – 72 с.

 

ã Лицей естественных наук, 2009

ã Г.Г. Самарин, 2009

 

 

Кинематика

Равномерное прямолинейное движение

 

  1. Точки А и В движутся согласно уравнениям: хА = 2 – 3t [м], хВ = 3 + 5t [м]. Встретятся ли эти точки? Если встретятся, то через сколько времени после начала движения?

Ответ: не встретятся.

 

  1. Движение точки описывается уравнениями проекции на координатные оси: х = 2 + 3t, y = 1 + 4t. Найти модуль и направление скорости точки.

Ответ: 5 м/с, 53о к оси ОХ.

  1. Hа pисунках а) и б) даны гpафики движения двух тел. Записать уpавнение движения каждого тела и, пользуясь этими уpавнениями, опpеделить вpемя и место встpечи тел.

Ответ: а): х1 = 1 + 0,8t; х2 = 3 + 0,4t; б): х1 = 7 – t, x2 = 1 + t.

 

  1. По уравнениям движения тел: х1 = -3 + 2t и х2 = 4 – 0,5t построить графики зависимости х1(t), х2(t), определить время и место их встречи.

Ответ: 2,8 с; 2,6 м.

 

  1. Два тела начали одновременно двигаться навстречу друг другу со скоростями: 8 м/с и 12 м/с. Расстояние между телами в начальный момент времени 800 м. Спустя какое время: а) тела встретятся? б) расстояние между телами будет 200 м?

Ответ: а): 40 с; б): 30 с, 50 с.

 

  1. Из города А вышел пешеход со скоростью 1,2 м/с. Через 1 мин вслед за ним вышел второй пешеход со скоростью 1,8 м/с. Когда и на каком расстоянии от города А второй пешеход догонит первого?

Ответ: спустя 120 с после выхода второго, 216 м.

 

  1. Из одного города в другой выехал велосипедист. Когда он проехал 27 км, вслед ему выехал автомобиль, имеющий скорость в 10 раз большую, чем у велосипедиста. Каково расстояние между городами, если второго города они достигли одновременно?

Ответ: 30 км.

 

  1. Поезд ехал 5 часов со скоpостью 80 км/ч, затем пpостоял на станции 30 мин, а следующие 125 км он ехал со скоpостью 50 км/ч. Hайти сpеднюю скоpость поезда.

Ответ: 65,6 км/ч.

 

  1. Первую четверть пути автомобиль проехал со скоростью 40 км/ч, а оставшийся путь – со скоростью 60 км/ч. Определить среднюю скорость автомобиля на всем пути.

Ответ: 53,3 км/ч.

 

  1. Первую четверть времени автомобиль двигался со скоростью 40 км/ч, а оставшееся время – со скоростью 60 км/ч. Определить среднюю скорость автомобиля на всем пути.

Ответ: 55 км/ч.

 

  1. Чтобы проехать от города А до города Б по расписанию, автобус должен развивать среднюю скорость 60 км/ч. Однако, на первой половине пути ему удавалось развивать скорость 50 км/ч. С какой скоростью нужно проехать вторую половину пути, чтобы уложиться в график движения?

Ответ: 75 км/ч.

 

  1. Автомобиль пpоходит пеpвую тpеть пути со скоpостью u1, а оставшуюся часть пути - со скоpостью 50 км/ч. Опpеделить скоpость на пеpвом участке пути, если сpедняя скоpость на всем пути 37,5 км/ч.

Ответ: 25 км/ч.

 

  1. Автомобиль проехал половину пути со скоростью 60 км/ч. Половину оставшегося времени движения он ехал со скоростью 15 км/ч, а последний участок пути – со скоростью 45 км/ч. Какова средняя скорость автомобиля на всем пути?

Ответ: 40 км/ч.

 

  1. Тело совеpшает два последовательных, одинаковых по модулю пеpемещения со скоpостями 20 м/с под углом 60о к напpавлению оси ОХ и 40 м/с под углом 120о к тому же напpавлению. Hайти сpеднюю скоpость перемещения.

Ответ: 23 м/с.

 

  1. Пеpвую половину вpемени тело движется со скоpостью 20 м/с под углом 60о к заданному напpавлению, а втоpую половину вpемени - под углом 120о к тому же напpавению со скоpостью 40 м/с. Hайти сpеднюю скоpость перемещения.

Ответ: 26,46 м/с.

 

 

Относительность движения.

  1. Слон идет к беpегу pеки со скоpостью 5 км/ч. Между слоном и беpегом не останавливаясь бегает Моська со скоpостью 12 км/ч. Какое pасстояние пpобежит Моська за вpемя, пока слон подойдет к беpегу, если pасстояние между слоном и pекой в начальный момент вpемени 7,5 км?

Ответ: 18 км.

 

  1. Когда два тела pавномеpно движутся навстpечу дpуг дpугу, то pасстояние между ними уменьшается на 16 м за каждые 10 с. Если тела с пpежними по величине скоpостями будут двигаться в одном напpавлении, то pасстояние между ними будет увеличиваться на 3 м за каждые 5 с. Каковы скоpости тел?

Ответ: 0,5 м/с; 1,1 м/с.

 

  1. По двум паpаллельным путям в одном напpвлении идут товаpный поезд длиной 630 м со скоpостью 48,6 км/ч и электpопоезд длиной 120 м со скоpостью 102,6 км/ч. Сколько вpемени будет длиться обгон?

Ответ: 50 с.

 

  1. Эскалатоp метpо поднимает неподвижно стоящего на нем пассажиpа в течение 1 мин. По неподвижному эскалатоpу пассажиp поднимается за 3 мин. Сколько вpемени будет подниматься пассажиp по движущемуся эскалатоpу?

Ответ: 45 с.

 

  1. Эскалатор метро поднимает стоящего на нем пассажира за 3 мин, а идущего по нему – за 2 мин. Сколько времени поднимался бы пассажир по неподвижному эскалатору? Сколько времени будет подниматься пассажир, если он пойдет по движущемуся эскалатору вдвое быстрее?

Ответ: 6 мин, 1,5 мин.

 

  1. По спускающемуся эскалатору идет пассажир со скоростью 1,5 м/с относительно эскалатора. Скорость эскалатора 1 м/с. Общее количество ступеней 100. Сколько ступеней пройдет пассажир, спускаясь по эскалатору?

Ответ: 60.

 

  1. Пассажир, спускаясь по движущемуся эскалатору, насчитал 50 ступенек, а, спускавшись в 3 раза быстрее, насчитал 75 ступенек. Сколько ступенек насчитал бы пассажир, спускаясь по неподвижному эскалатору?

Ответ: 100.

  1. Между двумя пунктами, pасположенными на pеке на pасстоянии 100 км один от дpугого, куpсиpует катеp, котоpый, идя по течению, пpоходит это pасстояние за 4 ч, а идя пpотив течения - за 10 ч. Опpеделить скоpость течения pеки и скоpость катеpа относительно воды.

Ответ: 7,5 км/ч; 17,5 км/ч.

 

  1. Hа беpегу pеки pасположены два пункта А и В. Мотоpная лодка пpоходит pасстояние между ними по течению за вpемя t1, а пpотив течения - за вpемя t2. Hайти вpемя t3, за котоpое плот пpойдет от А до В.

Ответ: 2t1×t2/(t2 –t1).

 

  1. От пристани А к пристани В плывет лодка со скоростью 3 км/ч относительно воды. От пристани В по направлению к пристани А одновременно с лодкой отходит катер, скорость которого относительно воды 10 км/ч. За время движения лодки между пристанями катер успевает пройти это расстояние 4 раза и прибывает к В одновременно с лодкой. Определить направление и скорость течения реки.

Ответ: 0,51 км/ч, от В к А.

 

  1. Мимо пристани проплывает плот. В этот момент в поселок, находящийся на расстоянии 15 км от пристани вниз по реке, от­правляется моторная лодка. Она дошла до поселка за ¾ ч и, по­вернув обратно, встретила плот на расстоянии 9 км от поселка. Ка­ковы скорость течения реки и скорость лодки относительно воды?

Ответ: 4 км/ч; 16 км/ч.

 

  1. Поднимаясь вверх по реке, рыбак уронил с лодки деревянный багор, когда проплывал под мостом. Спустя 0,5 ч он обнаружил пропажу и, повернув назад, догнал багор на расстоянии 5 км от моста. Определить скорость течения реки, считая, что рыбак все время греб одинаково.

Ответ: 5 км/ч.

 

  1. Два катера, шедшие навстечу, встретились у моста и разошлись. Повернув через 1 час, они вновь встретились на расстоянии 4 км от моста. Определить скорость течения реки, полагая, что скорость катеров относительно воды оставалась неизменной.

Ответ: 2 км/ч.

 

  1. Тоpпеду выпускают из точки А в тот момент, когда коpабль пpотивника находится в точке В, двигаясь со скоpостью 50 км/ч, напpавленной под углом 30о к линии АВ. Скоpость тоpпеды 100 км/ч. Под каким углом к лини АВ ее надо выпустить, чтобы поpазить цель?

Ответ: 14,5о.

 

  1. Чеpез pеку пеpепpавляется лодка, деpжа напpавление пеpпендикуляpно течению pеки. Скоpость лодки 4 м/с, скоpость течения pеки 3 м/с. Какова шиpина pеки, если лодку снесло по течению на 60 м.

Ответ: 80 м.

 

  1. Лодочник пеpевозит пассажиpов с одного беpега на дpугой за 10 мин, двигаясь от одного беpега до дpугого по кpатчайшему пути. Скоpость течения pеки 0,3 м/с. Шиpина pеки 240 м. С какой скоpостью относительно воды и под каким углом к беpегу должна двигаться лодка?

Ответ: 0,5 м/с; 53о.

 

  1. При переправе через реку шириной 200 м скорость лодки меньше скорости течения реки в 2 раза. В таком случае переправа без сноса невозможна. Под каким углом к направлению течения лодка должна держать курс, чтобы снос получился минимальным? На какое расстояние при этом снесет лодку?

Ответ: 120о ; 346 м.

 

  1. С какой скоростью и в каком направлении должен лететь самолет, чтобы за 2 ч пролететь точно на север расстояние 200 км, если во время полета дует северо-западный ветер под углом 30о к меридиану со скоростью 27 км/ч?

Ответ: 124 км/ч, на северо-запад под углом 6о15' к меридиану.

 

  1. Три черепахи находятся в углах правильного треугольника со стороной а. Черепахи начинают двигаться одновременно с одинаковой и постоянной по модулю скоростью u. При этом первая черепаха все время держит курс на вторую, вторая – на третью, а третья – на первую. Через какое время t черепахи встретятся?

Ответ: 2а/3u.

  1. По сторонам прямого угла АОВ скользит стержень АВ. В момент, когда стержень составляет угол a со стороной ОВ, скорость точки А равна uА. Чему равна в этот момент скорость точки В?

Ответ: uВ = uА×tga.

 

  1. Два автомобиля, движущиеся со скоростями 60 км/ч и 80 км/ч, подъезжают к перекрестку. Когда первый на перекрестке, второй находится на расстоянии 100 м от него. На какое минимальное расстояние сблизятся автомобили?

Ответ: 60 м.

 

  1. Две прямые дороги пересекаются под углом 60о. От перекрестка по ним удаляются две машины: одна со скоростью 60 км/ч, другая со скоростью 80 км/ч. Определить скорость, с которой одна машина удаляется от другой. Перекресток машины прошли одновременно.

Ответ: 1) 72,1 км/ч при движении в одну сторону; 2) 121,7 км/ч при движении в противоположные стороны.

 

  1. Точки 1 и 2 движутся по осям Х и У. В начальный момент точка 1 находится на pасстоянии 10 см, а точка 2 - на pасстоянии 5 см от начала кооpдинат. Пеpвая точка движется со скоpостью 2 см/с, а втоpая - со скоpостью 4 см/с. Каково наименьшее pасстояние между точками?

Ответ: 6,7 см.

 

  1. Лодка подтягивается к высокому берегу озера при помощи веревки, которую наматывают с постоянной скоростью 1 м/с на цилиндрический барабан, находящийся на высоте 6 м над уровнем воды. Определить скорость лодки в момент времени, когда длина веревки равна 10 м, а также расстояние, на которое переместится лодка из этого положения в течение 1 с.

Ответ: 1,25 м/с; 1,25 м.

 

Равнопеременное движение

  1. Движение тела описывается уравнением х = - 5 – 6t – 8t2. Описать движение этого тела. Записать функцию зависимости проекции скорости этого тела от времени.

Ответ: хо = - 5 м, uо = - 6 м/с, а = - 16 м/с2, u = - 6 – 16t.

 

  1. Прямолинейное движение точки задано уравнением: х = - 2 + 3t – 0,5t2. Написать уравнение зависимости u(t); построить график зависимости u(t); найти координату и скорость точки через 2 с и 8 с после начала движения; найти перемещение и путь за время 2 с и 8 с.

Ответ: u = 3 – t, х1 = 2 м, х2 = -10 м, s1 = 4 м, s2 = 8 м, L1 = 4 м, L2 = 17 м.

 

  1. Тело, двигаясь без начальной скорости, прошло за первую секунду 1 м, за вторую – 2 м, за третью – 3 м, за четвертую – 4 м и т. д. Можно ли считать такое движение равноускоренным?

Ответ: нельзя.

 

43. Дан график зависимости скорости движения некоторого тела от времени. Определить характер этого движения. Найти начальную скорость и ускорение, записать уравнение движения тела, считая начальную координату тела равной нулю.

Ответ: х = 0 + 5t – 0,25t2.

44. На рисунке дан график зависимости ко­ординаты тела от времени. После мо­мента времени t1 кривая графика - пара­бола. Построить графики зависимости скорости и ускорения тела.

Ответ: рис. 1, стр. 71.

 

45. График зависимости а(t) имеет форму, изображенную на рисунке. Начертить графики зависимости скорости, перемещения и коорди­наты тела от времени, если начальная скорость тела – 3 м/с, а начальная координата тела 2 м.

Ответ: рис. 2, стр. 71.

 

46. Два велосипедиста едут навстречу друг другу. Один, имея скорость 18 км/ч, движется равнозамедленно с ускорением 0,2 м/с2. Другой, имея скорость 5,4 км/ч, движется равноускоренно с ускорением 0,2 м/с2. Через какое время велосипедисты встретятся и какое перемещение совершит каждый из них до встречи, если расстояние между ними в начальный момент времени 130 м?

Ответ: 20 с, 60 м, 70 м.

 

47. Два велосипедиста едут навстречу друг другу. Первый, имея скорость 27 км/ч, поднимается в гору с ускорением –0,15 м/с2, а второй, имея скорость 9 км/ч, спускается с горы с ускорением 0,25 м/с2. Через сколько времени они встретятся, если известно, что встреча произошла на середине пути?

Ответ: 25 с.

 

48. Два автомобиля выезжают из одного пункта в одном направлении. Второй автомобиль выезжает на 20 с позже первого. Оба движутся равноускоренно с одинаковым ускорением 0,4 м/с2. Через сколько времени, считая от начала движения второго автомобиля, расстояние между ними окажется 240 м?

Ответ: 20 с.

 

49. С каким ускорением движется тело, если за восьмую секунду после начала движения оно прошло путь 30 м? Найти путь за пятнадцатую секунду.

Ответ: 4 м/с2, 58 м.

 

50. За пятую секунду равнозамедленного движения тело проходит 5 см и останавливается. Какой путь проходит тело за третью секунду этого движения?

Ответ: 25 см.

 

51. Пуля, летящая со скоростью 400 м/с, попадает в деревянную преграду и проникает в нее на глубину 32 см. Считая движение пули равноускоренным, найти ускорение и время движения пули внутри преграды. Какова была ее скорость на глубине 24 см? На какой глубине скорость пули уменьшится в 4 раза?

Ответ: -2,5×105 м/с2, 1,6×10-3 с, 200 м/с, 0,3 м.

 

52. В момент, когда тронулся поезд, провожающий начал равномерно бежать по ходу поезда со скоростью 3,5 м/с. Принимая движение поезда равноускоренным, определить скорость поезда в тот момент, когда провожаемый поравняется с провожающим.

Ответ: 7 м/с.

53. От движущегося поезда отцепляют последний вагон. Поезд продолжает двигаться с той же скоростью. Как будут относиться пути, пройденные поездом и вагоном, до момента остановки вагона?

Ответ: S1/S2 = 2.

 

54. Автомобиль движется с постоянным ускорением 1 м/с2. В данный момент он имеет скорость 10,5 м/с. Где он был секунду назад?

Ответ: - 10 м.

 

55. Тело движется с постоянным ускорением, имея начальную скорость 10 м/с. Каким должно быть его ускорение, чтобы оно за 2 с сместилось на 10 м?

Ответ: - 5 м/с2.

 

56. Поезд начинает движение из состояния покоя и равномерно увеличивает свою скорость. На первом километре она возросла на 10 м/с. На сколько возрастет она на втором километре?

Ответ: 4,2 м/с.

 

57. Тело двигалось по оси ОХ с постоянным ускорением. В точке х2 = 2 м оно имело скорость u2 = 2 м/с, а в точке х3 = 3 м оно имело скорость u3 = 3 м/с (обе скорости направлены в сторону оси ОХ). Было ли это тело в точке х1 = 1 м?

Ответ: Не было.

 

58. При равноускоренном движении точка проходит за первые два равные последовательные промежутки времени по 4 с каждый пути 24 м и 64 м. Определить начальную скорость и ускорение точки.

Ответ: 1 м/с; 2,5 м/с2.

 

59. По наклонной доске снизу вверх пустили катиться шарик. На расстоянии 30 см от начала пути шарик побывал дважды: через 1 с и через 2 с после начала движения. Определить начальную скорость и ускорение шарика.

Ответ: 0,45 м/с; 0,3 м/с2.

 

60. Шарик, пущенный вверх по наклонной плоскости, проходит последовательно два равных отрезка длиной L каждый и продолжает двигаться дальше. Первый отрезок шарик прошел за t секунд, а второй – за 3t секунд. Найти скорость шарика в конце первого отрезка пути.

Ответ: 5L/6t.

 

61. Два шарика начали одновременно и с одинаковой скоростью катиться по поверхностям, изображенным на рисунке. Как будут отличаться скорости и временадвижения шариков к моменту их прибытия в т. В? Трением пренебречь.

Ответ: uверх = uниж, tверх > tниж.

 

62. Расстояние между двумя станциями метро 3 км поезд проходит со средней скоростью 54 км/ч. При этом на разгон он затрачивает 20 с, затем идет равномерно и на замедление до остановки тратит 10 с. Определить наибольшую скорость поезда.

Ответ: 16,2 м/с.

 

63. Длина перегона трамвайного пути 400 м. Зная, что в начале и в конце перегона вагон движется с постоянным ускорением 0,5 м/с2 и что вагон должен проходить перегон за 1 мин 20 с, определить наибольшую скорость вагона.

Ответ: 5,9 м/с.

 

64. Первую четверть пути турист проехал на велосипеде со скоростью 15 км/ч, вторую четверть прошел пешком со скоростью 6 км/ч. Остаток пути он проделал на машине, скорость которой на горизонтальном участке была 60 км/ч. Половину расстояния, пройденного машиной, составлял подъем в гору. На этом участке пути машина двигалась равнозамедленно с остановкой в конце пути. Определить среднюю скорость движения туриста на всем пути.

Ответ: 14 км/ч.

Свободное падение тел.

(ускорение свободного падения считать равным 10 м/с2)

65. Тело падает с высоты 100 м без начальной скорости. За какое время тело проходит первый и последний метр своего пути? Какой путь проходит тело за первую и за последнюю секунду своего движения?

Ответ: 0,45 с; 0,0224 с; 5 м; 40 м.

 

66. Свободно падающее тело прошло последние 10 м за 0,25 с. Определить высоту падения и скорость в момент падения на землю.

Ответ: 85,3 м; 41,3 м/с.

 

67. Тело свободно падает с высоты 270 м. Разделить эту высоту на три части так, чтобы на прохождение каждой из них потребовалось одинаковое время.

Ответ: 30 м, 90 м, 150 м.

 

68. С крыши падают капли воды. Промежуток времени между отрывами капель 0,1 с. На каком расстоянии друг от друга будут находиться капли через 1 с после начала падения первой капли следующие три?

Ответ: 0,95 м, 0,85 м, 0,75 м.

 

69. В последнюю секунду свободно падающее тело прошло половину своего пути. Сколько времени и с какой высоты падало тело?

Ответ: 3,4 с; 57,8 м.

 

70. С каким промежутком времени оторвались от карниза две капли, если спустя 2 с после начала падения второй капли расстояние между каплями равно 25 м?

Ответ: 1 с.

 

71. Камень падает в шахту. Через 6 с слышен удар камня о дно шахты. Определить глубину шахты, если скорость звука 330 м/с.

Ответ: 153 м.

 

72. Тело свободно падает без начальной скорости с высоты 100 м. Какова средняя скорость его падения?

Ответ: 22,4 м/с.

 

73. Тело свободно падает с некоторой высоты. На второй половине пути средняя скорость тела равна 39,2 м/с. Чему равна высота падения?

Ответ: 106 м.

 

74. Тело брошено вертикально вверх со скоростью 14 м/с. На какую высоту поднимется оно за 2 с? Какой путь оно пройдет за это время?

Ответ: 8 м; 11,6 м.

 

75. Тело, брошенное вертикально вверх с некоторой начальной скоростью, побывало на высоте 4 м дважды с интервалом времени 2 c. Найти максимальную высоту подъема и начальную скорость тела.

Ответ: 9 м, 13,4 м/с.

 

76. С какой начальной скоростью нужно бросить вертикально вниз тело с высоты 20 м, чтобы оно упало на 1 с раньше тела, упавшего с той же высоты без начальной скорости?

Ответ: 15 м/с.

 

77. С какой начальной скоростью нужно бросить вертикально вверх тело, чтобы оно упало на 1 с раньше тела, упавшего с высоты 20 м без начальной скорости?

Ответ: 5 м/с.

 

78. Тело брошено вертикально вверх со скоростью u0. Можно ли так подобрать эту скорость, чтобы, двигаясь вверх, тело поднялось за 2 с на 10 м?

Ответ: нельзя.

 

79. С башни высотой 80 м бросают одновременно два шарика: один - вверх со скоростью 10 м/с, другой - вниз со скоростью 5 м/с. Каков промежуток времени, отделяющий моменты их падения на землю?

Ответ: 1,6 с.

 

80. Два камня находятся на одной вертикали на расстоянии 10 м друг от друга. Одновременно верхний камень бросают вниз со скоростью 20 м/с, а нижний – отпускают. Спустя какое время и на какой высоте камни столкнутся?

Ответ: 0,5 с; ниже начального положения второго камня на 1,25 м.

 

81. Из точек А и В, расположенных по вертикали на расстоянии 100 м друг от друга (т. А выше), бросают одновременно два тела с одинаковой скоростью 10 м/с: из точки А - вниз, из точки В - вверх. Через сколько времени и в каком месте они встретятся?

Ответ: через 5 с; ниже т. В на 75 м.

 

82. Жонглер бросает вверх шарики. Когда первый шарик достиг верхней точки, был брошен второй шарик с той же начальной скоростью. На какой высоте встретятся шарики, если высота их бросания 5 м?

Ответ: 3,75 м.

 

83. Два тела брошены вертикально вверх из одной и той же точки с одинаковой начальной скоростью 20 м/с с промежутком времени 0,5 с. Через какое время после бросания второго тела и на какой высоте тела встретятся?

Ответ: 1,75 с; 19,7 м.

 

84. Камень брошен вертикально вверх. Какой должна быть его начальная скорость, чтобы подъем на высоту 30 м занял 6 с? Какой будет эта скорость, если сократить время подъема до 3 с?

Ответ: . 35 м/с; 25 м/с.

 

85. Из вертолета, поднимающегося вверх с ускорением 1 м/с2, на высоте 450 м выпал предмет. Определить время падения предмета и его скорость при ударе о землю.

Ответ: 13 с; 100 м/с.

 

86. Парашютист равномерно опускается со скоростью 0.5 м/с. В некоторый момент времени он подбрасывает вертикально вверх не­большое тело с начальной скоростью 4,5 м/с относительно себя. На каком расстоянии окажутся парашютист и тело, находящееся в выс­шей точке своей траектории?

Ответ: 1 м.

 

87. Двигатели ракеты с вертикальным взлетом работают 10 с, в тече­ние которых ракета движется с ускорением 4g. Найти наибольшую высоту подъема, время подъема и время падения ракеты. Сопротив­лением воздуха пренебречь.

Ответ: 10 км; tпод = 50 с; tпад = 45 с.

 

88. Лифт начинает подниматься с ускорением 2,2 м/с2. Когда его ско­рость достигла 2,4 м/с, с потолка кабины лифта начал падать болт. Чему равны время падения болта и перемещение болта относи­тельно Земли? Высота кабины лифта 2,5 м.

Ответ: 0,64 с; 0,46 м.

 

89. Мяч свободно падает с высоты 15 м на горизонтальную поверх­ность. При каждом подскоке его скорость уменьшается в 2 раза. Найти путь, пройденный мячом с начала падения до остановки.

Ответ: 25 м.

 

Движение тела, брошенного под углом к горизонту

90. Камень, брошенный горизонтально с начальной скоростью 10 м/с, упал на расстоянии 10 м от вертикали, проходящей через точку бро­ска. С какой высоты был брошен камень?

Ответ: 5 м.

 

91. Камень, брошенный горизонтально с крыши дома со скоростью 15 м/с, упал на землю под углом 60о к горизонту. Какова высота дома?

Ответ: 34 м.

 

92. Камень брошен с земли под углом 30о к горизонту со скоростью 10 м/с. Спустя какое время камень будет на высоте 1 м?

Ответ: 0,28 с; 0,72 с.

 

93. Камень брошен с башни высотой 100 м со скоростью 10 м/с, направленной под углом 30о выше уровня горизонта. На каком рас­стоянии от основания башни он упадет?

Ответ: 43,3 м.

 

94. Снаряд вылетел из пушки под углом a к горизонту с начальной ско­ростью uо. Найти:

· зависимость координат снаряда от времени и получить уравнение траектории;

· время полета снаряда;

· максимальную высоту подъема снаряда;

· дальность полета снаряда;

· под каким углом к горизонту нужно вести стрельбу, чтобы при заданной начальной скорости дальность полета снаряда была наибольшей?

· под каким углом к горизонту нужно вести стрельбу, чтобы высота подъема снаряда была равна дальности его полета?

Ответ: у = tqa×x - g/(2uо2cos2a)×x2, t = (2uоsina)/g, h = (uо2sin2a)/2g, S = (uо2sin2a)/g, 45о, 76о.

 

95. Камень брошен с башни под углом 30о выше уровня горизонта со скоростью 10 м/с. Каково расстояние между местом бросания камня и местом его нахождения спустя 4 с после момента его бросания?

Ответ: 69,3 м.

 

96. На крутом берегу реки высотой 200 м находится орудие, ствол которого расположен на 30о ниже уровня горизонта. Известно, что скорость вылета снаряда 500 м/с. На какое расстояние от берега надо подпустить вражескую лодку, чтобы поразить ее?

Ответ: 346,6 м.

 

97. Из шланга, лежащего на земле, бьет под углом 45о к горизонту вода с начальной скоростью 10 м/с. Площадь сечения шланга 5 см2. Определить массу струи, находящейся в воздухе.

Ответ: 7 кг.

98. Два камня брошены под раз­личными углами к горизонту со скоростями u1 и u2 так, как показано на рисунках (а) и (б). Не прибегая к расчетам, сделать вывод, какой камень улетит дальше.

Ответ: в обоих случаях первый.

 

99. Два тела бросили одновременно из одной точки: одно – верти­кально вверх, другое – под углом 60о к горизонту. Начальная скорость каждого тела 25 м/с. Пренебрегая сопротивлением воздуха, найти расстояние между телами через 1,7 с.

Ответ: 22 м.

 

100. Мяч, брошенный с земли со скоростью 10 м/с под углом 45о к гори­зонту, упруго ударяется о вертикальную стенку, находящуюся на рас­стоянии 3 м от места бросания. Определить: а) модуль и направле­ние скорости мяча после удара; б) на каком расстоянии от места бро­ска мяч упадет на землю.

Ответ: а) 7,63 м/с; 22о выше уровня горизонта; б) 4 м.

 

101. Какое расстояние по горизонтали пролетит тело (до удара о пол), брошенное со скоростью 10 м/с под углом 60о к горизонту, если оно упруго ударяется о потолок? Высота потолка 3 м.

Ответ: 4,8 м.

 

102. Под углом 60о к горизонту брошено тело с начальной скоростью 20 м/с. Спустя какое время оно будет двигаться под углом 45о к гори­зонту?

Ответ: 0,73 с; 2,7 с.

 

103. Из орудия ведут обстрел объекта, расположенного на склоне горы. На каком расстоянии от орудия будут падать снаряды, если их на­чальная скорость 100 м/с, угол наклона горы 30о (ниже уровня гори­зонта), а ствол орудия расположен горизонтально?

Ответ: 1333 м.

 

104. Из орудия ведут обстрел объекта, расположенного на склоне горы. На каком расстоянии от орудия будут падать снаряды, если их на­чальная скорость 100 м/с, угол наклона горы 30о, угол стрельбы 60о по отношению к горизонту?

Ответ: а) 667 м, если наклон горы вверх к горизонту, б)1333 м, если наклон горы вниз к горизонту.

 

105. На какое максимальное расстояние можно забросить тело вверх на наклонную плоскость с углом 30о выше уровня горизонта, если на­чальная скорость тела 10 м/с?

Ответ: 6,7 м.

 

106. Тело А бросают вертикально вверх со скоростью 20 м/с. На какой высоте h находилось тело Б, которое, будучи брошено с горизонталь­ной скоростью 4 м/с одновременно с телом А, столкнулось с ним в полете? Расстояние по горизонтали между исходными положениями тел равно 4 м. Найти также время движения тел до столкновения и скорость каждого тела в момент столкновения.

Ответ: h = 20 м; uА = 10 м/с, uБ = 10,8 м/с, t = 1 с.

 

107. С башни высотой 10 м в горизонтальном направлении бросают ка­мень со скоростью 23 м/с. Одновременно с поверхности земли под углом 30о к горизонту бросают камень со скоростью 20 м/с навстречу первому. На каком расстоянии от башни находится точка бросания второго камня, если камни столкнулись в воздухе?

Ответ: 40,4 м.

 

108. Параллельно поверхности земли летел коршун со скоростью 5 м/с. Царевич пустил стрелу со скоростью 15 м/с, прицелившись прямо в коршуна под углом 60о к горизонту. На какой высоте летел коршун, если стрела попала в него?

Ответ: 7,5 м.

 

109. С аэростата, поднимающегося с ускорением 0,5 м/с2, через 4 с по­сле его отрыва от земли бросают под углом 30о к горизонту камень со скоростью 5,5 м/с относительно аэростата. На каком расстоянии от места подъема аэростата с земли камень упадет на землю? Сколько времени камень будет находиться в полете?

Ответ: 7,2 м; 1,5 с.

 

110. Шарик свободно падает по вертикали на наклонную плоскость. Пролетев расстояние 1 м, он упруго отражается и второй раз падает на ту же плоскость. Найти расстояние между точками соприкоснове­ния шарика и плоскости, если плоскость составляет с горизонтом угол 30о.

Ответ: 4 м.

 

 

111. Из точки А свободно падает тело. Одновре­менно из точки В под углом a к горизонту бро­сают другое тело так, что оба тела столкнулись в воздухе. Определить угол a, если Н/L = 1,6.

Ответ: tga = H/L, a = arctg(H/L) = 58о.

 

 

Кинематика движения по окружности

 

112. Точка равномерно движется по окружности радиуса 1,2 м и за 1 мин совершает 24 оборота. Найти: период, частоту, угловую скорость линейную скорость и центростремительное ускорение точки.

Ответ: 2,5 с; 0,4 с-1; 2,5 рад/с; 3 м/с; 7,5 м/с2.

 

113. За 10 с точка прошла половину окружности, радиус которой 1 м. Определить ее линейную скорость.

Ответ: 0,314 м/с.

 

114. Точка движется по окружности с постоянной скоростью 0,5 м/с. Вектор скорости изменяет свое направление на 30о за каждые 2 с. Каково нормальное ускорение точки?

Ответ: 0,13 м/с2.

 

115. Конец минутной стрелки часов на Спасской башне Кремля передвинулся за 1 мин на 37 см. Какова длина стрелки?

Ответ: 3,5 м.

 

116. Минутная стрелка часов в три раза длиннее секундной. Каково отношение линейных скоростей концов этих стрелок?

Ответ: 1 : 20.

 

117. Каково ускорение точек земного экватора, обусловленное суточ­ным вращением Земли?

Ответ: 0,034 м/с2.

 

118. Определить линейную скорость точки поверхности Земли, соответствующей широте г. Кирова (58о северной широты), и на эква­торе.

Ответ: 246,5 м/с, 465,2 м/с.

 

119. На сколько орбита первого спутника Земли короче орбиты третьего спутника, если средние радиусы их орбит отличаются на 410 км?

Ответ: 2574,8 км.

 

120. Точка движется в плоскости, причем ее прямоугольные координаты определяются уравнениями x = Aсos(wt), y = Asin(wt), где А и w - постоянные. Какова траектория точки?

Ответ: окружность радиуса А с центром в начале координат.

121. Две точки М и К движутся по окружности с постоянными угловыми скоростями wм = 0,2 рад/с и wк = 0,3 рад/с. В на­чальный момент времени угол между радиусами этих точек равен p/3. В какой момент времени точки первый раз встре­тятся?

Ответ: 52,3 с.

 

122. По окружности радиуса 2 м одновременно движутся две точки так, что уравнения их движения имеют вид: j1 = 2 + 2t и j2 = -3 – 4t. Опре­делить их относительную скорость в момент встречи.

Ответ: 12 м/с.

 

123. Движение от шкива 1 к шкиву 4 переда­ется при помощи двух ременных передач. Шкивы 2 и 3 жестко укреплены на одном валу. Найти частоту вращения шкива 4, если шкив 1 делает 1200 об/мин, а радиусы шкивов: R1 = 8 см, R2 = 32 см, R3 = 11 см, R4 = 55 см.

Ответ: 1 с-1.

 

124. Мальчик вращает камень, привязанный к веревке длиной 0,5 м, в вертикальной плоскости с частотой 3 об/с. На какую высоту взлетел камень, если веревка оборвалась в тот момент, когда скорость была направлена вертикально вверх?

Ответ: 4,5 м относительно места обрыва веревки.

 

125. Определить радиус маховика, если при вращении скорость точек его на ободе 6 м/с, а скорость точек, находящихся на 15 см ближе к оси, 5,5 м/с.

Ответ: 1,8 м.

 

126.

 
 

Автомобиль А движется по закруглению радиусом 0,5 км, а автомо­биль В – прямолинейно. Расстояние АВ = 200 м. Скорость каждого ав­томобиля 60 км/ч. Найти скорость автомобиля В относительно авто­мобиля А в указанный момент времени.

Ответ: -24 км/ч, т.е. направлена назад.

 

127. Пропеллер самолета радиусом 1,5 м вращается с частотой 2×103 об/мин, при этом посадочная скорость самолета относительно земли равна 161 км/ч. Какова скорость точки на конце пропеллера? Какова траектория движения этой точки?

Ответ: 317 м/с, винтовая линия радиусом 1,5 м с шагом 1,34 м.

 

128. Тело брошено горизонтально со скоростью 4 м/с с высоты 1 м. Определить радиусы кривизны траектории в ее начальной и конечной точках.

Ответ: 1,6 м, 5,4 м.

 

129. Колесо застрявшей в грязи машины вращается с частотой 2 об/с. Радиус колеса 60 см. На каком наименьшем расстоянии от центра ко­леса должен стоять человек, чтобы в него не попадали комья грязи?

Ответ: 6,2 м.

 

130. Велосипедист едет с постоянной скоростью u = 2 м/с по прямолинейному участку дороги. Найти мгновенные скорости точек А, В, С, D и Е, лежащих на ободе колеса и указанных на рисунке.

Ответ: uА = 0, uВ = 4 м/с, uС = 2,83 м/с, uD = 2ucos(a/2), uЕ = 2usin(a/2).

 

131. В какую сторону будет катиться катушка, если ее тя­нуть за нить под разными углами? Во всех случаях ка­тушка не проскальзывает.

Ответ: а) катушка покоится; б) вправо; в) влево.

 

132. Катушка с намотанной на нее нитью может катиться по поверхности горизонтального стола без скольже­ния. С какой скоростью и в каком направлении будет перемещаться ось катушки, если конец нити тянуть в горизонтальном направлении со скоростью u0? Радиус внутренней части катушки - r, внешней - R.

Ответ: u0R/(R-r).

133. Решить предыдущую задачу, если нить сматывается с катушки так, как показано на рисунке.

Ответ: u0R/(R+r).

 

134. С колеса автомобиля, движущегося со скоростью 72 км/ч, летают комки грязи. Радиус колеса 40 см. На какую высоту над дорогой будет подбрасываться грязь, оторвавшаяся от т. А колеса, положение кото­рой указано на рисунке? Угол j = 30о.

Ответ: 5 м.

 

135. С какой скоростью должен ехать автомобиль, чтобы оторвавшийся с его колеса в точке А камушек попал в ту же точку колеса, находящуюся в том же положении? Радиус колеса 20 см.

Ответ: м/с, где k - целое число.

 

136. Кривошип ОА, вращаясь с угловой скоростью 2,5 рад/с, приводит в движение колесо радиуса r = 5 см, катящееся по неподвижному колесу радиуса R = 15 см. Найти скорость точки В.

Ответ: 1 м/с.

 

137. Диск зажат между движущимися со скоростями u1 = 6 м/с и u2 = 4 м/с параллельными рейками. Ка­кова скорость центра диска?

Ответ: 5 м/с.

138. Цилиндр радиусом 25 см зажат между движущи­мися со скоростями u1 = 6 м/с и u2 = 4 м/с парал­лельными рейками. С какой угловой скоростью вра­щается цилиндр?

Ответ: 20 рад/с.

139. Обруч, проскальзывая, катится по горизонталь­ной поверхности. В некоторый момент времени скорость верхней точки А равна 6 м/с, а нижней точки В - 2 м/с. Определить скорость концов диа­метра СD, перпендикулярного к АВ для того же момента времени.

Ответ: 4,47 м/с.

 

140. Две нити, намотанные на катушку, тянут со скоростями u1 и u2. С какой скоростью движется центр катушки? С какой угловой скоростью враща­ется катушка? Радиусы r и R заданы.

Ответ: w = (u1+u2)/(R+r), uо = (u1R-u2r)/(R+r).

 

141. Шарик радиусом 5 см катится равномерно и без про­скальзывания по двум параллельным рейкам, расстояние между которыми d = 6 см, и за каждые 2 с проходит 120 см. С какими скоростями движутся верхняя и нижняя точки шарика?

Ответ: 1,35 м/с, 0,15 м/с.

142. Точка, лежащая на пересечении рельса с внешним ободом колеса поезда, движется в данный момент времени со скоростью u = 5 м/с. С какой скоростью и в каком направлении движется поезд, если r = 50 см, R = 56 см.

Ответ: 10 м/с, вправо.

 

Равнопеременное движение по окружности

143. Вал начинает вращение из состояния покоя и в первые 10 с совер­шает 50 оборотов. Считая вращение вала равноускоренным, опреде­лить угловое ускорение.

Ответ: 6,3 рад/с2.

 

144. Шкив радиусом 20 см приводится во вращение грузом, подвешен­ным на нити, сматывающейся со шкива. В начальный момент вре­мени груз был неподвижен, а затем стал опускаться с ускорением 2 см/с2. Найти угловую скорость шкива в тот момент, когда груз прой­дет 1 м и ускорение точек, лежащих на поверхности шкива.

Ответ: 1рад/с; 0,2 м/с2.

 

145. Материальная точка, начав двигаться равноускоренно по окружно­сти радиусом 1 м, прошла за 10 с 50 м. С каким нормальным ускоре­нием двигалась точка спустя 5 с после начала движения?

Ответ: 25 м/с2.

 

146. Точка движется по окружности радиусом 20 см с постоянным тангенциальным ускорением. Найти величину этого ускорения, если известно, что к концу пятого оборота после начала движения линей­ная скорость точки 79,2 cм/с.

Ответ: 0,05 м/с2.

 

147. Точка движется по окружности радиуса 20 см с постоянным каса­тельным ускорением 5 см/с2. Через сколько времени после начала движения нормальное ускорение будет равно касательному?

Ответ: 2 с.

 

148. Тело начинает вращаться с постоянным угловым ускорением 0,04 рад/с2. Через сколько времени после начала вращения полное ускорение какой-либо точки тела будет направлено под углом 76о к направлению скорости этой точки?

Ответ: 10 с.

 

149. Диск начинает движение из состояния покоя и вращается равноускоренно. Каким будет угол между вектором скорости и векто­ром ускорения произвольной точки диска, когда он сделает один обо­рот?

Ответ: 85о.

 

150. Машина въезжает со скоростью 36 км/ч на закругленный участок шоссе радиусом 200 м и начинает тормозить с ускорением 0,3 м/с2. Найти нормальное и полное ускорение машины, а также угол между ними через 30 с после указанного момента.

Ответ: аn = 5 мм/с2, а = 0,3 м/с2, j = 89о.

 

151. Поезд въезжает на закругленный участок пути с начальной скоро­стью 54 км/ч и проходит путь 600 м за 30 с, двигаясь равноускоренно. Радиус закругления равен 1 км. Определить скорость и ускорение в конце этого пути.

Ответ: 90 км/ч, 0,71 м/с2.

152. Ступенчатый шкив с радиусами r = 0,25 м и R = 0,5 м приводится во вращение грузом, опускающимся с ускорением 2 см/с2. Опре­делить модуль и направление ускорения точки М в тот момент, когда груз пройдет путь 100 см.

Ответ: ам= 32 м/с2, 83о к вертикали.

 

153. Снаряд вылетел со скоростью 320 м/с, сделав внутри ствола два оборота. Длина ствола 2 м. Считая движение снаряда внутри ствола равноускоренным, найти его угловую скорость вращения вокруг оси в момент вылета из ствола.

Ответ: 2013 рад/с.

 

154.

 
 

Диск радиусом 1 м начинает движение из состояния покоя и вращается равноускоренно. Тангенциальное ускорение точки, лежа­щей на ободе диска, 0,04 м/с2. Через сколько времени ускорение этой точки будет направлено под углом 45о к ее скорости?

Ответ: 5 с.

 

155. Скорость центра колеса, катящегося без проскальзывания по гори­зонтальной поверхности, изменяется со временем по закону uо = 1 + 2t (м/с). Радиус колеса 1 м. Найти скорости и ускорения четырех точек, лежа­щих на ободе колеса на концах взаимно перпен­дикулярных диаметров, один из которых горизон­тален, через 0,5 с после начала движения.

Ответ: uА = 0, uВ = 4 м/с, uС = uD = 2,83 м/с; аА = 4 м/с2, аВ = 5,66 м/с2, аС = 6,32 м/с2, аD = 2,83 м/с2.

 

 

Динамика

 

Законы Ньютона. Движение без учета трения

156. Могут ли силы F1 = 10 Н и F2 = 14 Н, приложенные к одной точке, дать равнодействующую, равную 2 Н; 4 Н; 10 Н; 24 Н; 30 Н?

Ответ: 4 Н £ F £ 24 Н; 2 Н и 30 Н не могут.

 

157. Найти равнодействующую сил 2 Н, 4 H и 5 Н, образующих между собою на плоскости последовательно прямые углы.

Ответ: 5 Н.

 

158. Найти равнодействующую трех сил по 20 Н каждая, если углы ме­жду первой и второй, второй и третьей силами равны 60о.

Ответ: 40 Н.

 

159. Три силы действуют вдоль одной прямой. В зависимости от направления этих сил, их равнодействующая может быть равна 1 Н, 2 Н, 3 Н и 4 Н. Чему равна каждая из этих сил?

Ответ: 0,5 Н, 1 Н, 2,5 Н.

 

160. Два человека тянут шнур в противоположные стороны, каждый с силой 100 Н. Разорвется ли шнур, если он может выдержать нагрузку 150 Н?

Ответ: Нет.

 

161. В каком случае натяжение троса будет больше: 1) два человека тя­нут трос за концы с силами F, равными по модулю, но противополож­ными по направлению; 2) один конец троса привязан к столбу, а дру­гой конец человек тянет с силой 2F?

Ответ: Во втором.

 

162. Под действием силы в 20 Н тело движется с ускорением 0,4 м/с2. С каким ускорением будет двигаться это тело под действием силы в 50 Н?

Ответ: 1 м/с2.

 

163. Некоторая сила сообщает первому телу ускорение 2 м/с2, а вто­рому телу - ускорение 3 м/с2. Какое ускорение под действием той же силы получат оба тела, если их соединить вместе?

Ответ: 1,2 м/с2.

 

164. С какой силой нужно действовать на тело массой 5 кг, чтобы оно падало вертикально вниз с ускорением 15 м/с2?

Ответ: 25 Н.

 

165. Поезд массой 500 т, двигавшийся по горизонтальному пути со скоростью 13 м/с, останавливается под действием постоянной силы сопротивления, равной 100 кН. Сколько времени длилось торможение?

Ответ: 65 с.

 

166. Автомобиль массой 2 т, трогаясь с места, прошел путь 100 м за 10 с. Найти силу тяги двигателя, если сила сопротивления движению 1 кН.

Ответ: 5 кН.

 

167. Космический корабль массой 106 кг поднимается с Земли вертикально вверх. Сила тяги двигателя равна 3×107 Н. С каким ускорением поднимается корабль?

Ответ: 20 м/с2.

 

168. Воздушный шар массой 160 кг опускается с постоянной скоростью. Какое количество балласта нужно выбросить, чтобы шар поднимался с той же скоростью? Подъемная сила воздушного шара равна 1400 Н.

Ответ: 40 кг.

 

169. Человек массой 70 кг находится в лифте. Определить вес чело­века: 1) перед началом подъема; 2) в начале подъема с ускорением 3 м/с2; 3) в конце подъема с “замедлением” 3 м/с2.

Ответ: 1) 700 Н; 2) 910 Н; 3) 490 Н.

 

170. Какую перегрузку испытывает водитель, если автомобиль с места набирает скорость 180 км/ч за 10 с?

Ответ: Р/Ро = 1,1.

 

171. Через сколько секунд тело, брошенное вертикально вверх со скоростью 44,8 м/с, упало на землю, если сила сопротивления воз­духа не зависела от скорости и составляла 1/7 силы тяжести?

Ответ: 8,6 с.

 

Движение со связями.

172. Грузы массами 0,2 кг и 0,3 кг, связанные тонкой нерастяжимой ни­тью, находятся на гладкой горизонтальной поверхности. С каким ус­корением будут двигаться грузы и какова сила натяжения нити, если к грузу массой 0,2 кг приложена горизонтальная сила 1 Н?

Ответ: 2 м/с2; 0,6 Н.

 

173. Два тела, связанные нитью, находятся на гладком горизонтальном столе. Когда сила 100 Н была приложена к правому телу, сила натя­жения нити была 30 Н. Какой будет сила натяжения нити, если при­ложить эту силу к левому телу?

Ответ: 70 Н.

 

174. Четыре одинаковых бруска связаны нитями и положены на гладкий горизонтальный стол. К первому бруску приложена сила F. Опреде­лить ускорения тел и силы натяжения нитей.

Ответ: а = F/4m; Т1 = 3F/4, Т2 = F/2, Т3 = F/4.

 

175. На гладком горизонтальном столе лежит веревкамассой 1 кг. К ней прикладывают горизонтально направленную силу 2 Н. Найти силу на­тяжения веревки в сечении, находящемся на расстоянии 1/3 длины веревки от точки приложения силы.

Ответ: 1,33 Н.

176. К концам шнура, перекинутого через неподвижный блок, подвешены грузы 200 г и 300 г. Определить ускорения, с которыми будут двигаться грузы, силу натяжения шнура и показание динамометра, на котором висит блок.

Ответ: 2 м/с2; 2,4 Н, 4,8 Н.

 

177. Найти ускорения тел массами m1 = 0,1 кг и m2 = 0,3 кг, а также силу натяжения нити. Массой блоков и нитей можно пренебречь.

Ответ: а1 = 2,86 м/с2, а2 = 1,43 м/с2, Т = 1,3 Н.

 

 

178. На рисунке изображена система движущихся тел. Наклонная плоскость составляет угол 30о с горизонтом. Определить ускорения тел и силу натяжения нити.

Ответ: алев = 0,5g; асред = 0,75g, аправ = g, Т = 0,5 mg.

 

179. В механической системе, изображенной на ри­сунке, грузы массами m1 = 5 кг и m2 = 4 кг лежат на го­ризонтальной поверхности. Невесомая и нерастяжи­мая нить охватывает три невесомых блока. На сво­бодную ось верхнего блока начинает действовать по­стоянная вертикальная сила 10 Н. Определить уско­рение верхнего блока. Трением пренебречь.

Ответ: 1,125 м/с2.

 

180. Через неподвижный блок перекинута нить, на од­ном конце которой подвешена гиря массой 3 кг, а на другом конце - второй невесомый блок. На концах нити, перекинутой через второй блок, висят гири массой 2 кг и 1 кг. С каким ускорением будет двигаться гиря массой 3 кг?

Ответ: 5/9 м/с2.

 

181. К концам невесомой и нерастяжимой нити, перекинутой через неподвижный блок, подвешены два груза массой по 100 г каждый. На один из грузов положен перегрузок массой 10 г. Найти силу, с которой перегрузок давит не груз, а также силу давления на ось блока.

Ответ: 0,09 Н; 2,056 Н.

 

182. Через неподвижный блок перекинута веревка, за концы которой од­новременно хватаются две обезьяны массами 20 кг и 25 кг. Более легкая обезьяна держится за один конец веревки, а более тяжелая, схватившись за другой, карабкается вверх так, чтобы всё время оста­ваться на одной высоте. Через какое время более легкая обезьяна достигнет блока, если в начальный момент времени она находилась ниже оси блока на расстоянии 16,6 м?

Ответ: 3,65 с.

183. Между двумя одинаковыми гладкими брусками массой 1 кг каждый вставлен равнобедренный клин массой 1 кг с углом при вершине a = 60о. Вся сис­тема находится на гладкой плоскости. Определить ускорения брусков и клина.

Ответ: 3,5 м/с2; 6 м/с2.

 

184. Найти ускорения призмы массой 1 кг и куба мас­сой 2 кг, изображенных на рисунке. Трением пренеб­речь. Угол a = 40о.

Ответ: 4,2 м/с2, 3,5 м/с2.

Движение по окружности

 

185. Гиря массой 100 г равномерно вращается на нити в вертикальной плоскости. На сколько сила натяжения нити больше при прохождении гири через нижнюю точку, чем через верхнюю?

Ответ: 2 Н.

 

186. Ведро с водой вращают в вертикальной плоскости на веревке дли­ной 0,5 м. С какой наименьшей скоростью можно это делать, чтобы при прохождении ведра через высшую точку вверх дном вода не вы­ливалась?

Ответ: 2,2 м/с.

 

187. Два шарика массами 9 г и 3 г прикреплены нитями разной длины к вертикальной оси и приводятся во вращательное движение вокруг этой оси с постоянной угловой скоростью, при этом нити располага­ются перпендикулярно оси. Какова длина каждой нити, если их общая длина равна 1 м и силы натяжения нитей при вращении одинаковы?

Ответ: 25 см, 75 см.

 

188. Груз, подвешенный на нити длиной 60 см, двигаясь равномерно, описывает в горизонтальной плоскости окружность. С какой скоро­стью движется груз, если нить образует с вертикалью угол 30о?

Ответ: 1,3 м/с.

 

189. Груз массой 100 г, привязанный к нити длиной 40 см, совершает ко­лебания в вертикальной плоскости. Найти силу натяжения нити в мо­мент, когда нить составляет с вертикалью угол 60о, а скорость груза 2 м/с.

Ответ: 1,5 Н.

 

190. Конькобежец движется со скоростью 10 м/с по окружности радиу­сом 30 м. Под каким углом к горизонту он должен наклониться, чтобы сохранить равновесие?

Ответ: 71,5о.

 

191. Поезд движется по закруглению радиусом 800 м со скоростью 72 км/ч. На сколько внешний рельс должен быть выше внутреннего? Расстояние между рельсами по горизонтали принять равным 1,5 м.

Ответ: 7,5 см.

 

192. Самолет совершает поворот, двигаясь по дуге окружности со скоростью 360 км/ч. Определить радиус этой окружности, если корпус самолета повернут на угол 10о к горизонту.

Ответ: 5682 м.

 

193. С какой скоростью должен двигаться автомобиль, чтобы не оказы­вать давления на середину выпуклого моста, если радиус моста 250 м?

Ответ: 50 м/с.

 

194. Как относятся друг к другу силы, с которыми автомобиль, движу­щийся со скоростью 36 км/ч, давит на середины вогнутого и выпуклого мостов, имеющих радиус кривизны 40 м?

Ответ: 1,7.

 

195. По выпуклому мосту, радиус кривизны которого равен 90 м, со скоростью 54 км/ч движется автомобиль массой 2,0 т. В какой точке моста сила давления автомобиля на мост равна 5,0 кН?

Ответ: угол между вертикалью и радиусом 60о.

 

196. Полусферическая чаша радиусом R вращается вокруг вертикаль­ной оси с угловой скоростью w. В чаше лежит маленький шарик, вра­щающийся вместе с нею. Какой угол с вертикалью составляет пря­мая, соединяющая шарик с центром окружности?

Ответ: a = arcos(g/w2R).

 

Движение по наклонной плоскости

 

197. Длина наклонной плоскости 2,5 м, высота – 25 см. Найти ускорение скользящего по ней без трения тела.

Ответ: 1 м/с2.

 

198. Тело скользит вниз по наклонной плоскости, длина которой 40 м, а наклон к горизонту 30о. Когда тело достигнет основания? Трением пренебречь.

Ответ: 4 с.

 

199. По наклонной плоскости с углом наклона 30о пе­ремещается вверх тело массой 3 кг под действием второго тела массой 2 кг, связанного с первым ни­тью, перекинутой через неподвижный блок. С каким ускорением движутся тела и чему равна сила на­тяжения нити?

Ответ: 1 м/с2; 18 Н.

200.






Дата добавления: 2014-10-29; просмотров: 1098. Нарушение авторских прав

Studopedia.info - Студопедия - 2014-2017 год . (0.301 сек.) русская версия | украинская версия