Студопедия — Задача 3. 1. Доказать свойство ассоциативности операции сложения
Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Задача 3. 1. Доказать свойство ассоциативности операции сложения






1. Доказать свойство ассоциативности операции сложения.

2. Дать теоретико-множественное истолкование правила вычита­ния числа из суммы.

Решение. 1. Докажем, что (" а, b, cÎ N)(а + b) + с = a + (b + с).

Дадим теоретико-множественное истолкование числовых выра­жений, записанных в левой и правой частях этого числового раве­нства. Пусть

а = п(А); b = п(В); с = п(С); тогда а + b = п(АÈ В), если АÇ В = Æ, (а + b) + с = п((А È В)È С), если (АÈ В) Ç С = Æ,

b + с = п(В È C), если В Ç С = Æ, а +(b + с) = п(А È (В Ç С)), если А Ç (ВÈ С) = Æ.

Используя диаграммы Эйлера-Венна, множества А, В и С можно изобразить так:

 


Пользуясь свойством ассоциативности операции объединения множеств, получаем

(" A, B, С) (A È B ) È C = А È (В È С) Þ п((АÈ B)È С) = п(АÈ (ВÈ С)) Þ (а +b) + с = а + (b + с)

(равные множества имеют и равное число элементов).

2. Рассмотрим один из способов вычитания, например (а + b)–с =(а – с)+b, если а> с. Пусть а = п(А); b = п(В); с = п(С). Дадим теоре­тико-множественное истолкование числовых выражений, запи­санных в левой и правой частях этого числового равенства. Для левой части равенства получим:

а + b = п(А È В), если А Ç B = Æ,

(а + b) – с = п((АÈ В)\С), если С Ì А È В.

Используя диаграммы Эйлера-Венна, множества А и В можно изобразить так:

 

 

Множество С может быть подмножеством А или В. Рассмотрим случай, когда С Ì А.

В правой части равенства получим:

а – с = п(А\C, т.к. С Ì А, (а – с) + b = п((А\С) È В), если (А\С) Ç B = Æ.

 

В этом случае множества изображаются так:

 

В

 

 

В левой части равенства круг для множества С расположен внутри круга для множества А.

Можно доказать, что (А È В) \ С = (А \ С) È В. Так как равные множества имеют равное число элементов, получаем:

п((АÈ В)\С) = п((А \С) È В) => (а + b) – с = (а – с) + b.







Дата добавления: 2014-11-10; просмотров: 1094. Нарушение авторских прав; Мы поможем в написании вашей работы!



Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...

Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...

Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...

Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...

ОСНОВНЫЕ ТИПЫ МОЗГА ПОЗВОНОЧНЫХ Ихтиопсидный тип мозга характерен для низших позвоночных - рыб и амфибий...

Принципы, критерии и методы оценки и аттестации персонала   Аттестация персонала является одной их важнейших функций управления персоналом...

Пункты решения командира взвода на организацию боя. уяснение полученной задачи; оценка обстановки; принятие решения; проведение рекогносцировки; отдача боевого приказа; организация взаимодействия...

Именные части речи, их общие и отличительные признаки Именные части речи в русском языке — это имя существительное, имя прилагательное, имя числительное, местоимение...

Интуитивное мышление Мышление — это пси­хический процесс, обеспечивающий познание сущности предме­тов и явлений и самого субъекта...

Объект, субъект, предмет, цели и задачи управления персоналом Социальная система организации делится на две основные подсистемы: управляющую и управляемую...

Studopedia.info - Студопедия - 2014-2024 год . (0.008 сек.) русская версия | украинская версия