Студопедия — Схема оценки химической обстановки
Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Схема оценки химической обстановки






       
   

 
 

Выявление химической обстановки

Определение последствий
 
 

разрушения (аварии)


 
 

Масштабы разрушения (аварии)


       
   

 
 
 
 

 
 

Масштабы химическогозаражения


 
 

Продолжительность заражения


 
 

Количественные характеристики выбросов


Опасность химического заражения

Распределение выбросов по месту и времени

Характер разлива характеризуется толщиной слоя (h) и площадью (F) разлива.

- h для свободно разлившихся на подстилающей поверхности - 0.05 м:

- при разливе из единичных емкостей в самостоятельный поддон (обвалование)

h = Н - 0, 2, (1)

где Н = высота поддона (обвалования), м;

- при разливе из группы емкостей, имеющих общий поддон (обвало­вание)

, (2)

где Q0- количество выброшенных СДЯВ, т;

F - площадь разлива, м2;

d - плотность СДЯВ, г/см3.

3) Для определения количественных характеристик выброса СДЯВ не­обходимо определить их эквивалентные значения.

При аварии наХОО эквивалентное количество СДЯВ по первично­му облаку(Qэ1) определяется по формуле:

, (3)

где k1- коэффициент, зависящий от условий хранения СДЯВ(для сжатых газов k1= 1)

k3- коэффициент, равный отношению пороговой токсодозе Cl2, к по­роговой токсодозе др. СДЯВ;

k5- коэффициент, учитывающий степень вертикальной устойчивос­ти воздуха

k7- коэффициент формулы (1);

Q0- количество выброшенного (разлившегося) при аварии СДЯВ, т.

При аварии на хранилищах сжатого газа величина Q0 рассчитывает­ся по формуле:

где d - плотность СДЯВ, т/м3;

Vx - объем хранилища, м3.

При авариях на газопроводе величина Q0 рассчитывается по фор­муле:

,

где n - процентное содержание СДЯВ в природном газе,

d - плотность СДЯВ, т/м3 Vг - объем секции газопровода между автоматическими отсекателями, м3.

Для определения величины Qэ1 для сжиженных газов, не вошедших в таблицу, значение коэффициента k7 принимается равным 1, а значе­ние коэффициента k1 рассчитывается по соотношению:

где Сp - удельная теплоемкость сжиженного СДЯВ, кДж/кг·град;

DТ - разность температур жидкого СДЯВ до и после разрушения ем­кости, °С,

DНисп - удельная теплота испарения жидкого СДЯВ при температуре испарения, кДж/кг.

По вторичному облаку эквивалентное количество СДЯВ определяет­ся по формуле:

, (4)

где k1; k2; k3; k4; k5; k7- коэффициенты из формул (1-3),

k6 - коэффициент, зависящий от времени, прошедшего после аварии N.

Значение коэффициента k6определяется после расчета продолжительности испарения вещества (Т, ч).

При N> Т, k6 = .

Если N< Т, k6= , если Т< 1ч => k6 принимается равным для 1ч.

При определении величины Qэ2 для веществ, не вошедших в табл. 17.1, значение коэффициента k7 принимается равным 1, а значение k2, определяется по формуле:

k2 = 8, 10 · 10-6 · р· ,

где р - давление насыщенного пара вещества при заданной Т, мм.рт. ст.;

М - молекулярная масса вещества.

В случае разрушения химически опасного объекта эквивалентное количество СДЯВ в облаке зараженного воздуха определяется только для вторичного облака при свободном разливе. При этом суммарное эквивалентное количество рассчитывается по формуле:

,

где k2i- коэффициент, зависящий от физико-химических свойств i-го СДЯВ;

k3i - коэффициент, равный отношению пороговой токсодозы хлора к пороговой токсодозе i-го СДЯВ;

k6i –коэффициент, зависящий от времени, прошедшего после разрушения объекта;

k7i - поправка на температуру для i-го СДЯВ;

Qi - запасы i-го СДЯВ на объекте, т;

di - плотность i-гоСДЯВ, .

Для определения масштаба (глубина и площадь) заражения при ава­рии на ХОО прежде всего рассчитывается глубина зоны химического за­ражения. Полная глубина зоны заражения (Г, кг), обусловленная воздействием первичного и вторичного облака СДЯВ, определяется по формуле:

Г = Г/ + 0, 5 · Г//, (5)

где Г//- наименьший;

Г/ наибольший из размеров Г1 и Г2.

Полученное значение Г сравнивается с предельно возможным значе­нием глубины переноса воздушных масс (Гп, км), определяемым по фор­муле:

Гп = N ·n, (6)

где N - время начала аварии, ч;

n- скорость переноса переднего фронта зараженного воздуха при данных скорости ветра и степени вертикальной устойчивости воздуха, км/ч.

Сравнивая значения полной глубины зоны заражения Г и предельно возможного значения глубины переноса воздушных масс, Гп для дальнейших расчетов выбирают наименьшее значение.

В случае разрушения химически опасного объекта при прогнозировании глубины заражения рекомендуется брать данные на одновремен­ный выброс суммарного запаса СДЯВ на объекте и следующие метеоус­ловия:

инверсия, скорость ветра V = 1 м/с.

Полученные по таблице значения глубины зоны заражения Г в за­висимости от рассчитанной величины Оэ и скорости ветра сравнивайся с предельно возможным значением глубины переноса воздушных масс Гп. За окончательно рассчитанную глубину зоны заражения принимается меньшее из двух сравниваемых между собой значений.

Площадь зоны возможного заражения первичным (вторичным) облаком СДЯВ (Sв, ) определяются по формуле

, (7)

 

где Г - глубина зоны заражения, км;

j- угловые размеры зоны возможного заражения.

Площадь зоны фактического заражения (Sф, км2) рассчитывается по формуле:

Sф = kв · Г2 · , (8)

где kв - коэффициент, зависящий от степени вертикальной устойчивости возду- ха;

N- время после аварии, ч.

Время подхода ОЗВ (облака зараженного воздуха) к объекту оценивается с целью принятия реше­ния о проведении необходимых защитных мероприятий при угрозе хи­мического заражения объекта. Оно зависит от скорости переноса облака воздушным потоком и определяется по формуле:

, (9)

где Х - расстояние от источника заражения до заданного объекта, км;

n- скорость переноса переднего фронта облака зараженного в зависимости от скорости ветра, км/ч.

Время поражающего действия СДЯВ определяется по формуле:

, (10)

где h - толщина слоя СДЯВ, при свободном разливе СДЯВ=0.05 м;

d - удельный вес (плотность) СДЯВ, г/ ;

k2- коэффициент, зависящий от физико-химических свойствСДЯВ;

k4- коэффициент, учитывающий скорость ветра;

k7- коэффициент, зависящий от времени, прошедшего после начала аварии.

Скорость химического заражения оценивается потерями. Потери в масштабах городов, областей и регионов определяются с учетом нахож­дения людей в укрытиях, на открытой местности и от степени обеспече­ния противогазами. Потери определяются по формуле:

, (11)

где Sф - площадь фактического заражения, км2;

b - процент потерь (на открытой местности и в укрытиях), %.

Потери на объекте агропромышленного производства определяются по формулам:

,

,

N - количество человек на открытой местности или в укрытиях;

b - процент потерь.

Зона химического заражения наносится на схему в зависимости от скорости ветра, либо в виде окружности, либо в виде полуокружности.

1. При n≤ 0, 5 м/с - в виде окружности (рис.17.1).

Точка (О) соответствует источнику заражения. Угловой размер зоны (j)=360°. Радиус окружности (г) равен глубине зоны заражения (Г).

Рис. 17.1 Зона химического заражения при n≤ 0, 5 м/с.

 

2. При 0, 5< n < 1м/с - зона химического заражения имеет вид по­луокружности (рис.17.2). Условный размер зоны (j) = 180°. Радиус полуокружнос­ти (r) равен глубине зоны заражения (Г). Биссектриса полуокружности совпадает с осью следа облака и ориентирована по направлению ветра.

Рис. 17.2 Зона химического заражения при 0, 5< n < 1м/с.

3. При n > 1 м/с зона заражения имеет вид сектора, где Rсектора = Гзаражения (рис.17.3).

Биссектриса сектора совпадает с осью следа облака и ориентирована по направлению ветра.

j = 90° при скорости ветра от 1, 1 до 2 м/с,

j = 45° при скорости ветра больше 2 м/с.

 

Рис. 17.3 Зона химического заражения при n> 1м/с.

 

Вариант оценки химической обстановки

На ХОО произошло разрушение обвалованной емкости со 100 т хло­ра. Высота обваловки 2, 2 м. Районный центр от источника заражения на­ходится в 4 км. Метеоусловия: изотермия, скорость приземного ветра 3 м/с, темпера­тура воздуха 0°С. Плотность населения 2 тыс. чел, на 1 км2. Обеспечен­ность противогазами 50%. Произвести оценку химической обстановки.

1. Поскольку один из вспомогательных коэффициентов, в частности k6 определяется после нахождения времени поражающего действия (или времени испарения) СДЯВ, (Т, ч), целесообразно начать расчет вре­мени поражающего действия СДЯВ по формуле (10):

,

где h - толщина слоя СДЯВ. при свободном разливе СДЯВ=0, 05м

d - плотность СДЯВ, г/см3 (см. табл. 17.1),

Вспомогательные коэффициенты:

k2 , k7 - (см. табл. 17.1)

k4 - (см. табл. 17.9)

h = (Н - 0, 2) м, где Н - высота обваловки.

k7 определяем по табл. 17.1, берем значение по знаменателю, так как стойкость определяется вторичным облаком.

ч.

Время оценки обстановки ограничено 4 часами (т.е. N - 4 часа пос­ле аварии). После четырех часов - уже прогноз.

2. Определяем эквивалентное количество вещества по первичному облаку (Qэ1, т) по формуле 3:

Qэ1=k1·k3·k5·k7·Q0,

где Q0 - количество СДЯВ, выброшенное при аварии, т,

k1, k3, k7- вспомогательные коэффициенты (см. табл. 17.1);

k5- вспомогательный коэффициент (см. табл. 17.2).

Qэ1= 0, 18 · 1 · 0, 23 · 0, 6 · 100 = 2, 48 т.

3. Определяем эквивалентное количество вещества по вторичному облаку (Qэ2, т) по формуле 7:

Qэ2 = (1- k1) ·k2·k3·k4·k5·k6·k7· .

Расчет значения k6:

Если N> Т, то k6 = Т08. В нашем случае N (4ч) < Т(35, 8 ч), поэтому

k6 = = = 3, 03. Поскольку данные табл. 17.3 рассчитаны по формуле k6 = , то значение k6 в данном случае можно взять и из табл. 17.3:

Qэ2 = (1 - 0, 18) · 0, 052 · 1· 3, 01 · 1, 67 · 0, 23 · 1 · т.

4. По табл. 17.10 для 2, 48 т хлора (Qэ1) интерполированием находим глубину зоны заражения первичным облаком СДЯВ (Г1, км):

3 т хлора...................... 3.99 км

2, 48т хлора……………X км

1 т хлора………………2, 17 км

В общем виде: Г1= Гмин +(Гмакс – Гмин) · (Qэкв1 – Qэкв мин)/(Qэкв макс – Qэкв мин)

В частном виде:

км.

5. Аналогично по табл. 17.10 для 1, 59 т хлора (Qэ2) интерполированием находим глубину зоны заражения вторичным облаком СДЯВ Г2 (км):

3 т хлора..................... 3, 99 км

1, 59 т........................... Х км

1 т хлора..................... 2, 17 км

км.

6. Определим максимальную полную глубину заражения Г(км) по формуле 9:

Г = Г ' + 0, 5 · Г ",

где Г - наибольшая, а Г ' наименьшая величина из размеров Г 'и Г".

Г= 3, 52 + 0, 5 * 2, 7 = 4, 87 км.

7. Определим предельное значение глубины переноса воздушных масс Гп (км) по формуле 6:

Гп = N · n,

где N - время после аварии, ч (в нашем случае N=4 ч),

n - скорость переноса переднего фронта облака зараженного воздуха (км/ч) (см. табл. 17.7)

Гп = 4·18 = 72 км,

За расчетную глубину заражения принимается 4, 87 км, как наимень­шая из сравниваемых величин (Г) и (Гп).

8. Нанесение зоны заражения на схему:

а) поскольку скорость приземного ветра равна 3 м/с то угловой размер зоны j (см. табл. 17.5) равен 45°;

б) при скорости ветра 1 м/с зона заражения имеет вид сектора.

Радиус сектора равен глубине зоны заражения Г. Точка О соответ­ствует источнику заражения. Биссектриса сектора совпадает с осью следа облака и ориентирована по направлению ветра.

9. Определяем площадь зоны возможного заражения Sв (км2) по фор­муле (7): Sв = 0, 00872 · j · Г2,

где 0, 00872 - расчетный коэффициент.

Г - полная глубина зоны заражения, км.

Sв = 0, 00872 · 4, 872 · 45 = 9, 3 км2.

10. Определяем площадь зоны фактического заражения Sв (км2) по формуле (8):

Sф = k8 · Г2 · ,

где k8 - коэффициент, зависящий от степени вертикальной устойчивости воздуха (СВУВ) (см. табл. 17.2);

Г - полная глубина зоны заражения, км;

N - время после начала аварии, ч;

Sф = 0, 133 · 4, 872 · =4, 16км2.

11. Определение числа людей, подлежащих эвакуации.

Количество людей подлежащих эвакуации (Nэ тыс. чел.) определяет­ся по формуле:

Nэ= А · Sв ,

где А - плотность населения, тыс. чел/км2;

Sв - площадь зоны возможного заражения, км2.

Nэ = 2 · 9, 3= 18, 6 тыс. чел.

12. Определение потерь:

а) потери населения Nэ (тыс.чел.) в регионах, областях, городах опре­деляют по формуле (11):

,

где Sф - площадь фактического заражения, км2;

b - процент потерь на открытой местности и в укрытии в зависимос­ти от обеспеченности населения противогазами.

тыс. чел.

Структура потерь определяется согласно примечанию (табл. 17.8):

- легкой степени (25%) – 1, 04 тыс.чел.;

- средней и тяжелой степени (40%) – 1, 67 тыс.чел.;

- со смертельным исходом (35%) – 1, 46 тыс.чел.


б) потери населения в условиях объекта агропромышленного произ­водства определяются по формулам:

Nп(о.м.) = N(о.м.) · П(о.м.)


где Nп(о.м.) - потери людей на открытой местности, чел.;

N(о.м.) - количество людей на открытой местности, чел.;

П(о.м.)- процент потерь на открытой местности (табл. 17.8).

Nп(укр) = N(укр.) · П(укр.)

где Nп(укр) - потери людей в укрытиях, чел.;

N(укр.) - количество людей в укрытиях, чел.;

П(укр.) - процент потерь в укрытиях (табл. 17.8).


Таблица 17.1.







Дата добавления: 2014-11-10; просмотров: 623. Нарушение авторских прав; Мы поможем в написании вашей работы!



Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...

Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...

Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...

Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...

Принципы и методы управления в таможенных органах Под принципами управления понимаются идеи, правила, основные положения и нормы поведения, которыми руководствуются общие, частные и организационно-технологические принципы...

ПРОФЕССИОНАЛЬНОЕ САМОВОСПИТАНИЕ И САМООБРАЗОВАНИЕ ПЕДАГОГА Воспитывать сегодня подрастающее поколение на со­временном уровне требований общества нельзя без по­стоянного обновления и обогащения своего профессио­нального педагогического потенциала...

Эффективность управления. Общие понятия о сущности и критериях эффективности. Эффективность управления – это экономическая категория, отражающая вклад управленческой деятельности в конечный результат работы организации...

Механизм действия гормонов а) Цитозольный механизм действия гормонов. По цитозольному механизму действуют гормоны 1 группы...

Алгоритм выполнения манипуляции Приемы наружного акушерского исследования. Приемы Леопольда – Левицкого. Цель...

ИГРЫ НА ТАКТИЛЬНОЕ ВЗАИМОДЕЙСТВИЕ Методические рекомендации по проведению игр на тактильное взаимодействие...

Studopedia.info - Студопедия - 2014-2024 год . (0.011 сек.) русская версия | украинская версия