Студопедия Главная Случайная страница Задать вопрос

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

ТОЧЕЧНЫЕ ОЦЕНКИ ЗАКОНОВ РАСПРЕДЕЛЕНИЯ





На практике все результаты измерений и случайные погрешности являются величинами дискретными. При использовании дискретных СВ возникает задача нахождения точечных оценок параметров их функций распределения на основаниистатистической совокупности, которая в этом случае называется выборкой. Выборка должна быть репрезентативной (представительной), то есть должна хорошо представлять генеральную совокупность.Генеральная совокупность - статистическая совокупность, содержащая в себе все возможные значения СВ.

Оценка параметра называется точечной, если она выражается одним числом. Точечная оценка может быть состоятельной, несмещенной и эффективной.

Состоятельной называется оценка, которая при увеличении объема выборки стремится по вероятности к истинному значению числовой характеристики.

Несмещеннойназывается оценка, математическое ожидание которой равно оцениваемой числовой характеристике.

Эффективнойназывается несмещенная оценка, имеющая наименьшую дисперсию из нескольких оценок.

Точечной оценкой математического ожидания(МО) результата измерений является среднее арифметическое значение измеряемой величины

,

где n – объем выборки; хi – значение СВ.

При любом законе распределения оно является состоятельной и несмещенной оценкой, а также наиболее эффективной по критерию наименьших квадратов.

Точечная оценка дисперсии (состоятельная и несмещенная) определяется по формуле

.

Среднее квадратическое отклонение(СКО) СВ определяется как корень квадратный из дисперсии. Однако операция извлечения корня является нелинейной процедурой и приводит к смещенности получаемой таким образом оценки. Для исправления оценки СКО вводится поправочный множитель k(n), зависящий от числа наблюдений (объема выборки n). Он изменяется от k(3) = 1,13 до k(¥) » 1,03. Тогда оценка СКО

.

Полученные оценки МО и СКО являются СВ. Это проявляется в том, что при повторениях серий из n наблюдений каждый раз будут получаться различные оценки и . Так как большое число измерений проводится довольно редко, то возникающая по этой причине погрешность обычно значительно больше погрешности, из-за смещенности оценки, обусловленной извлечением квадратного корня. Поэтому на практике поправочным множителем пренебрегают, то есть считают его равным 1.

Точечные оценки других параметров распределений (коэффициента асимметрии, эксцесса) используются значительно реже.






Дата добавления: 2014-11-10; просмотров: 569. Нарушение авторских прав

Studopedia.info - Студопедия - 2014-2017 год . (0.007 сек.) русская версия | украинская версия