Студопедия — ИЗУЧЕНИЕ КИНЕТИКИ ПРОЦЕССА КОНВЕКТИВНОЙ СУШКИ
Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

ИЗУЧЕНИЕ КИНЕТИКИ ПРОЦЕССА КОНВЕКТИВНОЙ СУШКИ






Ц е л ь р а б о т ы - построение по результатам испытаний кривой сушки и кривой скорости сушки, определение продолжительности процесса.

Т е о р е т и ч е с к а я ч а с т ь. Сушкой называют процесс удаления влаги из материала путем её испарения и отвода образующихся паров.

Сушка широко применяется в химической и пищевой промышленности на разных стадиях технологических процессов. Процесс высушивания материала в конвективных сушилках осуществляется при непосредственном соприкосновении нагретого сушильного агента с поверхностью влажного материала. При контакте влажного материала с сушильным агентом вследствие температурной разности поверхности тела и окружающей среды происходит испарение влаги, связанное с изменением её агрегатного состояния. Одновременно вследствие разности парциальных давлений паров влаги над влажной поверхностью тела и в окружающей среде осуществляется перенос массы влаги в окружающую среду. В результате испарения влаги с поверхности и отвода образовавшихся паров возникает градиент концентрации влаги в материале, являющийся движущей силой её внутреннего перемещения из глубины слоев к поверхности испарения. Это перемещение влаги сопряжено с нарушением её связи с материалом (скелетом твердого тела) и, следовательно, дополнительной затратой энергии помимо энергии, необходимой для парообразования. Поэтому скорость процесса зависит от характера или формы связи влаги с материалом [6, 20].

Об эффективности процесса сушки можно судить, изучая кинетику процесса путем экспериментального определения изменения средней влажности материала во времени.

Изменение влажности материала во времени ω = f(τ) графически изображается кривой линией (рис. 4.1), которая носит название кривой сушки. В общем случае кривая сушки состоит из нескольких участков. соответствующих различным периодам сушки.

 

 


 

 

       
   
  Д
 
 

 

 


Рис. 4.1. Кривая сушки ω = f(τ).     Рис. 4.2. Кривая скорости сушки dω / dτ = f(ω)
Период прогрева материала (1); постоянной скорости (2) и падающей скорости (3).

В начале сушки происходит нагрев материала до температуры мокрого термометра и небольшое уменьшение влажности (участок АВ - период прогрева материала), затем влажность материала значительно уменьшается по линейному закону (участок ВС - период постоянной скорости), при этом температура материала в большинстве случаев остается постоянной, равной температуре мокрого термометра. На заключительном этапе в период падающей скорости влажность материала изменяется по кривой СДЕ, приближающейся к равновесному значению ω р = const. Достижение равновесной влажности означает установление динамического равновесия, когда скорости испарения и конденсации равны, при этом температура материала становится равной температуре сушильного агента. В каждом конкретном случае вид функции ω = f(τ) может отличаться от приведенной на (рис. 4.1) в зависимости от формы и структуры материала, а также вида связи с ним влаги.

Скорость сушки определяется из кривой сушки путем графического дифференцирования, для чего к произвольной точке кривой, характеризующей влажность в данный момент времени, необходимо провести касательную до пересечения с осью абсцисс. Тангенс угла наклона касательной к оси абсцисс определяет скорость сушки в данный момент времени, наклон касательной находится построением прямоугольного треугольника, у которого гипотенузой является касательной, а катетами - соответствующие отрезки на осях координат, выраженные в определенных единицах измерения. Так, например, для точки С (рис. 4.1) скорость сушки будет равна тангенсу угла наклона касательной к кривой ω = f(τ)

 

. (4.2)

 

По формуле (4.2) вычисляют значения скорости сушки для ряда точек кривой сушки и откладывают их на графике в координатах dω /dτ = f(ω) (рис. 4.2). Вертикальными линиями разбить кривую сушки ω = f(τ) на 10 - I5 участков и для каждого определить тангенс угла наклона.

Текущей точке С на кривой ω = f(τ) соответствует точка С на кривой dω /dτ = f(ω). Прямому участку ВС на кривой ω = f(τ) соответствует одна касательная ко всем точкам этого участка, следовательно, один наклон касательной и постоянная скорость сушки ВС на кривой dω /dτ = f(ω).

Для последующих точек кривой сушки (Д, Е) тангенсы угла наклона уменьшаются и процесс сушки будет происходить в периоде падающей скорости, кривая СДЕ (рис. 4.2).

В начале процесса (после прогрева материала) скорость сушки оказывается постоянной, не зависящей от влажности материала. В этот период постоянной скорости (или первый период) происходит интенсивное испарение свободной влаги из материала (в основном у его поверхности). Скорость процесса является наибольшей, так как внутридиффузионное сопротивление (т.е. сопротивление продвижению влаги внутри материала) пренебрежимо мало по сравнению с внешнедиффузионным сопротивлением (т.е. сопротивлением продвижению пара от поверхности материала в окружающую среду).

Диффузионное сопротивление массопроводности внутри влажного материала не оказывает существенного влияния на процесс сушки в первый период и скорость сушки определяется только диффузией во внешней области (конвективной диффузией).

Период постоянной скорости сушки соответствует изменению влажности материала в пределах от ω к (начальная влажность) до ω кр (критическая влажность).

С уменьшением влажности материала внутридиффузионное сопротивление увеличивается и в некоторый момент достигает значения, соизмеримого с внешнедиффузионным сопротивлением. Общее сопротивление процесса возрастает, и скорость сушки падает.

При влажности материала ω < ω кр наступает второй период сушки - период падающей скорости сушки. Для второго периода сушки характерным является то, что процесс сушки в этот период лимитируется массопроводностью внутри влажного материала, а конвективная диффузия паров влаги от поверхности раздела фаз в ядро потока не оказывает существенного влияния на процесс сушки.

Период падающей скорости сушки соответствует изменению влажности материала в пределах от ω кр до ω к (конечная влажность материала), которая в пределе может быть равна ω р (равновесная влажность). Вид кривых скорости сушки во втором периоде весьма разнообразен и зависит как от формы и вида высушиваемого материала, так и от режима сушки.

Сопоставление кривых скорости сушки, полученных при разных режимах, дает возможность определить влияние того или иного фактора на протекание процесса сушки и подобрать рациональный режим для данного материала, определяющего продолжительность сушки.

В первом периоде скорость сушки постоянная (рис. 4.2), следовательно, - dω /dτ = N (знак минус означает убыль влаги со временем). Разделив переменные и проинтегрировав это уравнение в пределах изменения влажности в первом периоде

 

, (4.3)

 

получают ω н – ω кр = Nτ 1 и продолжительность сушки в первом периоде

 

, (4.4)

 

где N – скорость сушки в первом периоде.

Для определения продолжительности периода падающей скорости сушки кривую скорости сушки во втором периоде СДЕ заменяют осредняющей прямой С´ К (отсекаемые ею площади до кривой по обе стороны должны быть равновелики, а точка К соответствовать равновесной влажности материала). При этом точка С´ может лежать левее или правее (рис. 4.2) точки С, или совпадать с точкой С. Влажность материала, соответствующую точке С´, называют критической приведенной ω к.п . Для любой точки на прямой С'К, соответствующей влажности ω, справедливо выражение

 

, (4.5)

 

где Кс - тангенс угла наклона прямой С´ K к оси абсцисс, константа (коэффициент) скорости сушки во втором периоде. По своему физическому смыслу она выражает скорость убыли скорости сушки во втором периоде (ускорение со знаком минус).

Поскольку точка С´ относится как к первому периоду, так и ко второму, то

 

. (4.6)

 

Разделяя переменные и интегрируя уравнение (4.5) в пределах изменения влажности при сушке во втором периоде от ω к.п. до ω к,.

 

, (4.7)

получают

,

откуда

или

. (4.8)

 

Общая продолжительность сушки τ = τ 1 + τ 2. Значения ω кр, ω к.п., ω р и N определяют экспериментально.

 







Дата добавления: 2014-11-10; просмотров: 1043. Нарушение авторских прав; Мы поможем в написании вашей работы!



Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...

Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...

Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...

Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

ПУНКЦИЯ И КАТЕТЕРИЗАЦИЯ ПОДКЛЮЧИЧНОЙ ВЕНЫ   Пункцию и катетеризацию подключичной вены обычно производит хирург или анестезиолог, иногда — специально обученный терапевт...

Ситуация 26. ПРОВЕРЕНО МИНЗДРАВОМ   Станислав Свердлов закончил российско-американский факультет менеджмента Томского государственного университета...

Различия в философии античности, средневековья и Возрождения ♦Венцом античной философии было: Единое Благо, Мировой Ум, Мировая Душа, Космос...

Понятие и структура педагогической техники Педагогическая техника представляет собой важнейший инструмент педагогической технологии, поскольку обеспечивает учителю и воспитателю возможность добиться гармонии между содержанием профессиональной деятельности и ее внешним проявлением...

Репродуктивное здоровье, как составляющая часть здоровья человека и общества   Репродуктивное здоровье – это состояние полного физического, умственного и социального благополучия при отсутствии заболеваний репродуктивной системы на всех этапах жизни человека...

Случайной величины Плотностью распределения вероятностей непрерывной случайной величины Х называют функцию f(x) – первую производную от функции распределения F(x): Понятие плотность распределения вероятностей случайной величины Х для дискретной величины неприменима...

Studopedia.info - Студопедия - 2014-2024 год . (0.01 сек.) русская версия | украинская версия