Студопедия — Влияние добавок кремния на свойства железа
Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Влияние добавок кремния на свойства железа






Низкое электрическое сопротивление железа приводит к тому, что в переменных полях в железе возникают большие потери на вихревые токи и снижается магнитная проницаемость. При легировании железа кремнием удельное электрическое сопротивление существенно возрастает. Так у сплава, содержащего 5% кремния, удельное электрическое сопротивление достигает 0, 7 мкОм м, то есть увеличивается более чем в 7 раз по сравнению с чистым железом.

Кроме того, присутствие кремния в железе снижает магнитную анизотропию и магнитострикцию. При увеличении отношения a/r снижается разница в значениях обменного интеграла по различным направлениям, а следовательно, уменьшается магнитная анизотропия. У сплава содержащего 6, 8% Si магнитная анизотропия в 3 раза меньше чем у чистого железа, а магнитострикция практически равна нулю. Наконец при добавке к железу кремния нейтрализуется вредное влияние примесей кислорода и углерода. Последнее обстоятельство связано с тем, что кремний раскисляет сталь и способствует переходу углерода из карбида железа (цементита) в графит в соответствии с уравнениями:

FeO + Si = Fe + SiO2 (3.4)

Fe3C + Si = (Fe, Si) + Г (3.5)

Важно отметить, что взаимодействие кремния с дислокациями приводит к снижении подвижности последних, поэтому снижается пластичность сплавов. В связи с этим промышленные сплавы железа с кремнием - электротехнические стали содержат не более 5% Si.

Поскольку у электротехнических сталей сохраняется магнитная анизотропия, то для улучшения магнитных свойств применяют текстурованную сталь, то есть сталь, у которой некоторые кристаллографические направления в соседних зернах совпадают. Для получения стали с высокой магнитной проницаемостью и малыми потерями необходимо совпадение направлений типа [111]. Для того чтобы получить магнитную текстуру применяют холодную прокатку с большими обжатиями и последующий отжиг при температуре 900-1000оС. В ходе холодной деформации происходит ориентация зерен, а при отжиге идет рекристаллизация, приводящая к снижению плотности дислокаций и росту зерен. Текстурованную сталь называют также холоднокатаной. Холоднокатаная сталь в 1, 5 раза дороже горячекатаной, но потери в ней вдвое ниже. Важно иметь в виду, что для эффективного использования текстурованной электротехнической стали магнитный поток должен проходить вдоль направления легкого намагничивания.

 

 

 

Одним из распространенных методов измерения магнитных свойств ферромагнитных веществ является осциллографический метод. Электронно-лучевые осциллографы применяются для визуального наблюдения и фотографирования петель гистерезиса предельного и частных циклов перемагничивания. Осциллографический метод позволяет определить основную кривую намагничивания по координатам вершин семейства симметричных частных петель. К достоинствам метода относится возможность визуального наблюдения и изучения влияния различных факторов (деформации, температуры, магнитного поля и т.д.) на магнитные характеристики исследуемого материала. Недостатками метода являются: сравнительно невысокая точность измерений (5-7%), зависимость результатов измерения от фазовой и амплитудно-частотной погрешностей интегрирующих схем, ограниченность конфигураций исследуемых образцов.

Точность измерений с помощью осциллографа может быть повышена, если одновременно с осциллографированием динамической петли измерять с помощью вольтметра амплитудных значений напряжения на образцовом сопротивлении и измерительной катушке. В этом случае более точные значения максимальной напряженности магнитного поля и индукции определяют по показаниям вольтметра. Наличие такого прибора позволяет производить градуировку осциллографа.

Материалы при работе в переменном магнитном поле намагничиваются периодически от положительного до отрицательного амплитудного значений с частотой изменения внешнего поля. Магнитное состояние при этом изменяется по петле гистерезиса, которая называется динамической петлей. При одном и том же значении максимальной индукции динамическая петля обычно несколько шире статической петли гистерезиса. Это объясняется тем, что площадь динамической петли пропорциональна общим потерям в магнитном материале, которые складываются из потерь на гистерезис, на вихревые токи, а в некоторых случаях, потерь энергии вследствие наличия магнитной вязкости. Форма динамической петли гистерезиса материала зависит от частоты изменения перемагничивающего поля и предыстории. При малых значениях индукции динамическая петля гистерезиса имеет эллиптическую форму и только при больших значениях магнитной индукции она становится похожей на обычную статическую петлю гистерезиса.

Для того, чтобы получить на экране осциллографа запись петли гистерезиса, необходимо подать на вертикально отклоняющие пластины электронно-лучевой трубки напряжение, пропорциональное индукции в исследуемом образце, на горизонтально отклоняющие пластины – напряжение, пропорциональное намагничивающему полю. На рис. 1 показана общая схема установки, которая позволяет получать такие напряжения.

Изменение амплитуды переменного тока, протекающего по соленоиду, осуществляется автотрансформатором ЛАТр. В целях предохранения соленоида от перегрузок между автотрансформатором и соленоидом ставится понижающий трансформатор Тр. Регистрирующим прибором служит осциллограф С1-83. На усилитель канала «Х» осциллографа подается напряжение с эталонного сопротивления RH, включенного последовательно в цепь намагничивающей обмотки соленоида. Падение напряжения UН на сопротивлении RH прямо пропорционально величине тока в намагничивающей обмотке im.

Эта зависимость, выраженная через амплитудные значения тока и напряжения, будет иметь вид:

UH = im RH (1)

Максимальное значение напряженности намагничивающего поля в образце Hm (без учета размагничивающего поля) связано с амплитудным значением тока в соленоиде im соотношением:

, (2)

где k –постоянная соленоида.

Учитывая (1), получаем

(А/м), (3)

 

 
 

Отсюда видно, что напряженность магнитного поля в образце Hm пропорциональна амплитудному значению напряжения UH на эталонном сопротивлении.

Магнитную индукцию образца определяют по величине ЭДС E в измерительной катушке (ИК), возникающей при изменении в ней магнитного потока. Согласно закону Фарадея эта ЭДС связана с

изменением магнитной индукции по формуле

Е = - nS , (4)

где n – число витковизмерительной катушки, S –сечение образца, В – магнитная индукция в образце. После интегрирования выражения (4) найдем . (5)

Таким образом, для определения магнитной индукции в образце B нужно проинтегрировать сигнал E, наведенный в измерительной катушке меняющимся магнитным полем.

 
 

Для интегрирования сигнала применяют различные схемы. Простейшая схема интегратора, состоящая из последовательно соединенных резистора R и конденсатора C, приведена на рис. 2.

 
 

Для получения интегрированного сигнала необходимо, чтобы выходной сигнал Uвых был много меньше входного Uвх, т.е.:

Uв ых < < U вх. (6)

При выполнении этого условия ток в цепи интегратора будет равен

i @ Uвх / R

а напряжение на конденсаторе будет равно:

(7)

Таким образом, при выполнении вышеуказанного условия (6), величина выходного сигнала RC-ячейки пропорциональна интегралу от входного напряжения. Произведение RC, входящее в последнее выражение, называется постоянной времени интегрирующей цепи. Чем больше постоянная времени RC по сравнению с периодом изменения магнитного поля, тем точнее будет выполняться интегрирование сигнала (7).

За один период изменения тока в намагничивающей обмотке след электронного луча на экране осциллографа описывает полную петлю гистерезиса, а за каждый последующий период в точности ее повторяет. Поэтому на экране видна неподвижная петля гистерезиса.







Дата добавления: 2014-11-10; просмотров: 1765. Нарушение авторских прав; Мы поможем в написании вашей работы!



Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...

Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...

Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...

Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...

Задержки и неисправности пистолета Макарова 1.Что может произойти при стрельбе из пистолета, если загрязнятся пазы на рамке...

Вопрос. Отличие деятельности человека от поведения животных главные отличия деятельности человека от активности животных сводятся к следующему: 1...

Расчет концентрации титрованных растворов с помощью поправочного коэффициента При выполнении серийных анализов ГОСТ или ведомственная инструкция обычно предусматривают применение раствора заданной концентрации или заданного титра...

Сравнительно-исторический метод в языкознании сравнительно-исторический метод в языкознании является одним из основных и представляет собой совокупность приёмов...

Концептуальные модели труда учителя В отечественной литературе существует несколько подходов к пониманию профессиональной деятельности учителя, которые, дополняя друг друга, расширяют психологическое представление об эффективности профессионального труда учителя...

Конституционно-правовые нормы, их особенности и виды Характеристика отрасли права немыслима без уяснения особенностей составляющих ее норм...

Studopedia.info - Студопедия - 2014-2024 год . (0.008 сек.) русская версия | украинская версия