Студопедия — Общие сведения о заземляющих устройствах
Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Общие сведения о заземляющих устройствах






Защитное заземление – преднамеренное электрическое соединение с землей металлических нетоковедущих частей электроустановок, которые нормально не находятся под напряжением, но могут оказаться под ним (прежде всего вследствие нарушения изоляции).

При замыкании фазы на металлический корпус электроустановки он приобретает электрический потенциал относительно земли. Если к корпусу такой электроустановки прикоснется человек, стоящий на земле или токопроводящем полу (например, бетонном), он немедленно будет поражен электрическим током.

Посредством защитного заземления ток замыкания перераспределяется между заземляющим устройством и человеком обратно пропорционально их сопротивлениям. Поскольку сопротивление тела человека в сотни раз превышает величину сопротивления растеканию тока заземляющего устройства, через тело человека, прикоснувшегося к поврежденному заземленному оборудованию, пройдет ток, не превышающий предельно допустимого значения (10 мА), а основная часть тока уйдет в землю через контур заземления. При этом напряжение прикосновения на корпусе оборудования не превысит 42 В.

Контур заземления выполняют из стальных стержней, уголков, некондиционных труб и др. В траншее глубиной до 0, 7 м вертикально забиваются стержни (трубы, уголки и др.), а выступающие из земли верхние концы соединяются сваркой внахлест стальной полосой или прутком.

При этом необходимо соблюдать следующие условия.

1. Сечение соединительной полосы должно быть не менее 48 мм2, толщина – не менее 4 мм (рис 1, а); минимальный диаметр прутка – 10 мм (рис 1, б), минимальная толщина стенки уголка – 4 мм (рис. 1, в); минимальная толщина стенки трубы – 3, 5 мм (рис. 1, г).

2. Длина стержня должна быть не менее 1, 5...2 м, чтобы достичь незамерзающего слоя почвы (рис. 2).

Рис. 1. Минимально-допустимые геометрические размеры сечений

заземляющих элементов

Рис. 2. Установка одиночного заземлителя в двухслойном грунте:

L – длина одиночного заземлителя; D – диаметр одиночного заземлителя;

Н – толщина верхнего слоя грунта; Т – заглубление заземлителя (расстояние

от поверхности земли до середины электрода); t – глубина траншеи (заглубление соединительной полосы)

 

3. Расстояние между соседними стержнями рекомендуется выбирать равным длине стержня (если иное не предусмотрено условиями эксплуатации) (рис. 3).

Стержни можно располагать в ряд (рис. 3) или в виде какой-либо геометрической фигуры (квадрата, прямоугольника) в зависимости от удобства монтажа и используемой площади. Совокупность стержней, соединенных между собой полосой, образует контур заземления. В помещении контур заземления приваривается к корпусу силового щита и к заземляющей магистрали (шине заземления), которая проходит вдоль стен здания. На практике часто используются естественные заземлители (части коммуникаций, зданий и сооружений производственного или иного назначения), находящиеся в соприкосновении с землей. Это канализационные трубы, железобетонные конструкции фундаментов, свинцовые оболочки кабелей и др.

 

Рис. 3. Конструкция заземляющего устройства:

L – длина одиночного заземлителя; K – расстояние между соседними

(смежными) заземлителями

 

Измерение сопротивления растеканию тока заземляющих устройств должно производиться в сроки, установленные Правилами эксплуатации электроустановок потребителей (ПЭЭП) не реже одного раза в шесть лет, а также после каждого капитального ремонта и длительного бездействия установки.

Сопротивление заземляющих устройств рекомендуется измерять в наиболее жаркие и сухие или в наиболее холодные дни года, когда грунт имеет наименьшую влажность. Чем меньше влажность, тем выше удельное сопротивление грунта. В первом случае влага из грунта испаряется, во втором – замерзает (лед практически не проводит электрический ток). При замерах в другие дни нужно полученные значения корректировать с помощью поправочных коэффициентов, которые приводятся в ПЭЭП.

Все существующие методы измерения сопротивления растеканию тока заземляющих устройств сводятся к двум: метод «амперметра-вольтметра» и мостовой метод.

 

Метод «амперметр-вольтметр»

Для измерения необходимы: амперметр, вольтметр, понижающий трансформатор, коммутационная аппаратура, соединительные провода, а также два электрода: зонд (на стенде обозначен Rз) и вспомогательный электрод (Rв).

Зонд и вспомогательный электрод – два одинаковых стальных стержня диаметром не менее 5 см и длиной не менее 70 см. Их забивают в землю на определенном расстоянии от контура заземления Rx (рис. 4). Забивать электроды в грунт необходимо на глубину не менее 50 см.

Через понижающий трансформатор напряжение подается на контурзаземления и электроды. Через амперметр и зонд начинает протекать ток. При этом вольтметр покажет величину падения напряжения. Значение сопротивления растеканию тока определяется как отношение измеренного напряжения и тока: Rх = U/I.

Для исключения влияния «блуждающих» токов в грунте, возникающих при работе электротранспорта (трамваи, электрифицированные железные дороги) измерение сопротивления проводится на переменном токе. Кроме того, при использовании переменного тока не возникает электролиз, который вносит значительную погрешность в измерение. Поэтому необходим источник переменного тока – трансформатор, понижающий напряжение до безопасной величины (не более 42 В). Запрещается в качестве источника переменного тока использовать автотрансформаторы, так как наличие электрической связи между обмотками высокого и низкого напряжения значительно повышает вероятность электротравматизма.

Рис. 4. Схема измерения по методу " амперметр-вольтметр"

 

Метод, описанный выше, имеет целый ряд недостатков: наличие двух измерительных приборов, что снижает точностьизмерений; громоздкость понижающего трансформатора; необходимость подключения к сети переменного тока; опасность попадания под шаговое напряжение. Мостовой метод этих недостатков не имеет.

 







Дата добавления: 2014-11-10; просмотров: 806. Нарушение авторских прав; Мы поможем в написании вашей работы!



Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...

Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...

Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...

Типология суицида. Феномен суицида (самоубийство или попытка самоубийства) чаще всего связывается с представлением о психологическом кризисе личности...

ОСНОВНЫЕ ТИПЫ МОЗГА ПОЗВОНОЧНЫХ Ихтиопсидный тип мозга характерен для низших позвоночных - рыб и амфибий...

Принципы, критерии и методы оценки и аттестации персонала   Аттестация персонала является одной их важнейших функций управления персоналом...

Почему важны муниципальные выборы? Туристическая фирма оставляет за собой право, в случае причин непреодолимого характера, вносить некоторые изменения в программу тура без уменьшения общего объема и качества услуг, в том числе предоставлять замену отеля на равнозначный...

Тема 2: Анатомо-топографическое строение полостей зубов верхней и нижней челюстей. Полость зуба — это сложная система разветвлений, имеющая разнообразную конфигурацию...

Виды и жанры театрализованных представлений   Проживание бронируется и оплачивается слушателями самостоятельно...

Studopedia.info - Студопедия - 2014-2024 год . (0.011 сек.) русская версия | украинская версия