Студопедия — Примеры выполнения работы
Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Примеры выполнения работы






Проверка гипотезы о нормальном распределении

Загрузим пакет stats и подпакеты transform, describe.

> restart: with(stats): with(transform): with(describe):

Вводим реализацию выборки (см. данные своего варианта):

> Y: =[15.41, 13.32, 14.28, 12.26, 12.70, 13.97, 10.89, 13.46, 12.79,

13.96, 15.83, 13.27, 14.19, 14.78, 13.35, 16.56, 14.22, 13.26, 13.46,

14.98, 14.30, 14.23, 14.99, 11.90, 15.34, 13.80, 12.13, 13.06, 13.37,

13.69, 12.15, 14.50, 13.34, 13.37, 14.06, 15.82, 11.85, 12.30, 11.86,

12.86, 13.87, 16.39, 12.49, 13.93, 15.33, 14.44, 13.96, 14.74, 16.09,

12.65, 13.40, 13.44, 14.54, 13.23, 12.86, 15.91, 14.54, 12.16, 14.42,

14.76, 13.60, 12.86, 13.60, 13.58, 13.91, 13.49, 13.82, 15.51, 13.92,

15.59, 12.44, 15.70, 14.71, 15.61, 12.88, 11.79, 13.23, 11.79, 16.06,

12.29];

Определим объём выборки (подсчитаем количество значений в выборке) и рассчитаем количество интервалов разбиения k:

> n: =count(Y); k: =round(1+1.4*ln(n));

Проведём сортировку выборки (варианты расположим в порядке возрастания):

> Y1: =statsort(Y);

Находим минимальное и максимальное значения выборки и длину интервала разбиения:

> ymin: =Y1[1]; ymax: =Y1[n]; h: =(ymax-ymin)/k;

Вычислим границы интервалов разбиения:

> Y2: =[seq(ymin+(i-1)*(h+0.0001)..ymin+i*(h+0.0001), i=1..k)];

 

Находим вектор точек разбиения:

> Z: =[seq(ymin+(i-1)*(h+0.0001), i=1..k+1)];

Составляем интервальный ряд частот Y3 (каждому интервалу поставим в соответствие частоту ni, т.е. число элементов выборки, попадающих в данный интервал) и вектор частот Y3f:

> Y3: =statsort(transform[tallyinto](Y1, Y2));

> Y3f: =transform[frequency](Y3);

Получим интервальный ряд относительных частот (каждому интервалу поставим в соответствие относительную частоту, т.е. частоту, делённую на объём выборки):

> Y4: =transform[scaleweight[1/n]](Y3);

 

Строим гистограмму относительных частот:

> Hist: =statplots[histogram](Y4, color=green):

 

> plots[display](Hist);

 

По виду гистограммы выдвигаем гипотезу о нормальном распределении генеральной совокупности.

Находим накопленные частоты Y5 (накопленная частота показывает, сколько наблюдалось значений, меньших заданного x) и относительные накопленные частоты Y6:

> Y5: =transform[cumulativefrequency](Y3);

> Y6: =transform[cumulativefrequency](Y4);

.

Строим график эмпирической функции распределения:

> p: =[seq(plot(Y6[i], Y2[i], color=blue), i=1..k)]: plots[display](p);

 

Находим точечные оценки математического ожидания a (выборочное среднее значение), дисперсии S и среднего квадратического отклонения s:

> a: =mean(Y);

> S: =variance(Y);

> s: =standarddeviation(Y1);

.

Находим исправленные оценки дисперсии (несмещённая оценка дисперсии) и среднего квадратического отклонения:

> S1: =S*n/(n-1);

> s1: =sqrt(S1);

.

Вычислим вероятности попадания значения случайной величины в первый и последний (k- ый) интервалы:

> p[1]: =evalf(1/(sqrt(2*Pi)*s1)*int(exp(-(t-a)^2/(2*S1)), t=-infinity..Z[2]));

.

> p[k]: =evalf(1/(sqrt(2*Pi)*s1)*int(exp(-(t-a)^2/(2*S1)), t=Z[k]..infinity));

.

Вычислим вероятности попадания значения случайной величины во 2, 3, …, k -1 интервалы по формулам , где :

> for i from 2 to k-1 do p[i]: =evalf(1/(sqrt(2*Pi)*s1)*int(exp(-(t-a)^2/(2*S1)), t=Z[i]..Z[i+1])) od;

Находим теоретические частоты npi:

> for i from 1 to k do n*p[i] od;

Так как на первом и последнем интервалах npi < 5, то объединим 1-й со 2-м и 6-й с 7-м интервалы и пересчитаем соответствующие вероятности и частоты:

> p[2]: =p[1]+p[2]; Y3f[2]: =Y3f[1]+Y3f[2]; p[6]: =p[6]+p[7]; Y3f[6]: = Y3f[6] +Y3f[7];

.

Сравним эмпирические ni и теоретические npi частоты, для этого находим наблюдаемое значение по формуле , где i = 2, 3, …, 6, так как два первых и два последних интервала объединили.

> chi2: =sum((Y3f[j]-n*p[j])^2/(n*p[j]), j=2..6);

.

По таблице критических точек распределения , по заданномууровню значимости a и числу степеней свободы ν = s-l-1 (s – число интервалов после пересчёта, l – число параметров в гипотетической функции распределения) находят критическую точку . В нашем случае a = 0, 01(см. задание), s = 5, l = 2, т.е. ν = 5-2-1=2, тогда .

Так как , то гипотеза о нормальном распределении генеральной совокупности принимается.

Запишем гипотетическую функцию плотности распределения и построим на одном рисунке гистограмму относительных частот и график плотности гипотетического распределения.

> f: =evalf(1/(sqrt(2*Pi)*s1)*exp(-(x-a)^2/(2*S1)));

> f1: =plot(f, x=ymin-2..ymax+2):

> plots[display](Hist, f1);

 

Запишем гипотетическую функцию распределения и построим её график.

> F: =evalf(1/(sqrt(2*Pi)*s1))*Int(exp(-(t-a)^2/(2*S1)), t=-infinity..x);

> F1: =plot(F, x=ymin-2..ymax+2):

> plots[display](F1);







Дата добавления: 2014-11-10; просмотров: 591. Нарушение авторских прав; Мы поможем в написании вашей работы!



Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...

Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...

Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...

Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...

Основные разделы работы участкового врача-педиатра Ведущей фигурой в организации внебольничной помощи детям является участковый врач-педиатр детской городской поликлиники...

Ученые, внесшие большой вклад в развитие науки биологии Краткая история развития биологии. Чарльз Дарвин (1809 -1882)- основной труд « О происхождении видов путем естественного отбора или Сохранение благоприятствующих пород в борьбе за жизнь»...

Этапы трансляции и их характеристика Трансляция (от лат. translatio — перевод) — процесс синтеза белка из аминокислот на матрице информационной (матричной) РНК (иРНК...

Педагогическая структура процесса социализации Характеризуя социализацию как педагогический процессе, следует рассмотреть ее основные компоненты: цель, содержание, средства, функции субъекта и объекта...

Типовые ситуационные задачи. Задача 1. Больной К., 38 лет, шахтер по профессии, во время планового медицинского осмотра предъявил жалобы на появление одышки при значительной физической   Задача 1. Больной К., 38 лет, шахтер по профессии, во время планового медицинского осмотра предъявил жалобы на появление одышки при значительной физической нагрузке. Из медицинской книжки установлено, что он страдает врожденным пороком сердца....

Типовые ситуационные задачи. Задача 1.У больного А., 20 лет, с детства отмечается повышенное АД, уровень которого в настоящее время составляет 180-200/110-120 мм рт Задача 1.У больного А., 20 лет, с детства отмечается повышенное АД, уровень которого в настоящее время составляет 180-200/110-120 мм рт. ст. Влияние психоэмоциональных факторов отсутствует. Колебаний АД практически нет. Головной боли нет. Нормализовать...

Studopedia.info - Студопедия - 2014-2024 год . (0.01 сек.) русская версия | украинская версия