Студопедия — Quot;Измерение коэффициента теплопроводности воздуха методом нагретой нити"
Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Quot;Измерение коэффициента теплопроводности воздуха методом нагретой нити"






Функциональный модуль № 4 (рис.11).

1. На передней панели модуля расположены крепежный винт 1, табличка с названием работы 2, корпус термостата 5, гнезда 3 и 4 для подключения источника питания и мультиметра (вольтметра), тумблер для подключения вольтметра.

2. Нагреваемая вольфрамовая проволока-нить 7 (Рис.12) находится в цилиндрическом стеклянном баллоне 8 с двойными стенками, между которыми залита вода. Температура воды в баллоне и, следовательно, температура стенки Тс трубки постоянна в течение опыта. Вольфрамовая проволока через гнезда 3 и соединительные провода подключается к источнику питания постоянного тока приборного модуля. Ток в нити определяется по падению напряжения U0 на балластном сопротивлении R0. Напряжение на проволоке Uн и падение напряжения на балластном сопротивлении U0 измеряется мультиметром (вольтметром) модуля, подключенным с помощью соединительных проводов к гнездам 4 при соответствующем положении переключателя 6 (Рис.11). При нагревании нити вдоль радиуса трубки создается градиент температуры. Площадь, через которую передается тепло равна площади поверхности цилиндра, коаксиального с нагретой нитью. При этом можно записать:

(16)

 

где:

L - длина цилиндра радиуса r2.

Из (16) можно определить мощность теплового потока через внутрен­нюю цилиндрическую поверхность трубки радиуса r:

 

(17)

 

где:

r1 - радиус нити,

Тн - температура нити.

Опыт проводится при постоянной температуре трубки 9 (Рис.12), равной ТH. При этом увеличение электрической мощности, выделяемой в нити, на величину dP приводит к возрастанию ее температуры на dTH. Поэтому из (17) следует:

 

. (18)

Так как вблизи нити теплопроводность воздуха определяется темпе­ратурой нити, то в (18) величина x(Тн) относится к температуре Тн. При возрастании температуры нити на dTн дополнительный перенос тепловой мощности dP от нити к стенке трубки определяется только теплопровод-

остью слоя воздуха вблизи нити. Из соотношения (18) получим:

(19)

Для определения производной необходимо знать зависимость Р=f(TH) которую находят по экспериментальным данный. Мощность теплового потока Р = IH∙ UH находится по напряжению UH, измеренному на нити, и току IH = U0/R0, текущему через балластном сопротивление R и нить. Для определения тока измеряется напряжение на балластном сопротивлении U0. Температура нити определяется из соотношения:

(20) где:

RH0- сопротивление нити при t =0 С, Ом;

RH- сопротивление нити при температуре опыта, Ом;

 

α t- температурный коэффициент сопротивления материала нити, 1/гра Формула (19) позволяет по найденной экспериментальной зависимости Р=f(TH) определить x(ТH).

Дифференцируя (20), получается:

(21)

 

Подставляя dTН из (21) в (19) получается:

 

(22)

 

Формула (22) позволяет использовать график зависимости Р = f (RH) (Рис.15) для нахождения производной dP/dRH.

Функциональный-модуль N 4 (рис.11, 12, 13).

1. Соединить источник питания приборного модуля с помощью проводов с вольфрамовой проволокой через гнезда 3 модуля N4.

2. Соединить мультиметр (вольтметр) приборного модуля гнездами 4 тумблера переключения объектов измерений.

3. Включить электропитание приборного модуля, источник питания, мультиметр (вольтметр). Включить предел измерения напряжений мультиметра (вольтметра) 20 В.

4. Убедиться в том, что на входе источника питания отсутствует напряжение. При этом регулятор напряжения необходимо повернуть против часовой стрелки до упора.

5. Переключить тумблер 6 объектов измерений в положение rh для измерения напряжения на вольфрамовой проволоке.

6. Определить значения напряжений, подаваемые на вольфрамовую проволоку, при которых производятся измерения. Рекомендуемые значения напряжений, устанавливаемые на источнике питания: 2, 3, 4, 5, 6В. 6.4.7. Установить первое значение напряжения на источнике питания, следя за показаниями мультиметра (вольтметра). Произвести отсчет напряжения на вольфрамовой проволоке. Результат записать в таблицу.

8. Переключить тумблер 6 объектов измерений в положение Rш для измерения падения напряжения на балластном сопротивлении.

9. Переключить предел измерения напряжения мультиметра (вольтметра) на 200 mВ. Произвести отсчет падения напряжения на балластном сопротивлении. Результат записать в таблицу 4.

10. Переключить предел измерения напряжения мультиметра (вольтметра) на 20 В. Пункты 5.- 9 повторить для следующих значений напряжения на вольфрамовой проволоке.

Данные установки и таблица результатов измерений.

Радиус нити r1 = 0, 05мм;

Внутренний радиус трубки r2 = 3мм;

Сопротивление нити при 22 0С Roh= 4, 0 Ом;

Температурный коэффициент сопротивления нити K-1 = (3, 9÷ 4, 5)∙ 10-3;

Длина нити L = 405мм;

Балластное сопротивление Rш =0, 1 Ом.

Таблица 4

N опыта   UH, В   UOH, мВ   IH, А   RH, Ом   ТH, К   Р, Вт   x, Вт/м  
                             
.                              

11. Обработка результатов измерений.

1) Построить на миллиметровой бумаге график зависимости P=f(RH) (рис.13). Провести с помощью лекал -апроксимирующую кривую через совокупность экспериментальных точек.

Примечание. Масштаб графика согласовать с преподавателем.

2) Выбрать три точки кривой и графически определить производную dP/dRH в этих точках. Для этого провести в выбранных точках касательные к кривой и определять тангенс угла наклона каждой из них.

3) Рассчитать по формуле (22) коэффициент теплопроводности, а по формулам (20) температуру в выбранных точках.

4) Убедиться, что погрешность измерения коэффициента теплопроводности определяется в основном погрешностью определения IH и UH; расчи-тать погрешность по формуле:

(68)

 

Рис.11.

Рис.12.

Рис.13.

 

Контрольные вопросы.

 

1. Определение теплопроводности. Закон Фурье.

2. Методика используемая при определении коэффициента
теплопроводности.

3. Вывести формулу теплопроводности.

 








Дата добавления: 2014-11-10; просмотров: 1230. Нарушение авторских прав; Мы поможем в написании вашей работы!



Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...

Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...

Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...

Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...

Алгоритм выполнения манипуляции Приемы наружного акушерского исследования. Приемы Леопольда – Левицкого. Цель...

ИГРЫ НА ТАКТИЛЬНОЕ ВЗАИМОДЕЙСТВИЕ Методические рекомендации по проведению игр на тактильное взаимодействие...

Реформы П.А.Столыпина Сегодня уже никто не сомневается в том, что экономическая политика П...

Индекс гингивита (PMA) (Schour, Massler, 1948) Для оценки тяжести гингивита (а в последующем и ре­гистрации динамики процесса) используют папиллярно-маргинально-альвеолярный индекс (РМА)...

Методика исследования периферических лимфатических узлов. Исследование периферических лимфатических узлов производится с помощью осмотра и пальпации...

Роль органов чувств в ориентировке слепых Процесс ориентации протекает на основе совместной, интегративной деятельности сохранных анализаторов, каждый из которых при определенных объективных условиях может выступать как ведущий...

Studopedia.info - Студопедия - 2014-2024 год . (0.011 сек.) русская версия | украинская версия