Студопедия — РАСЧЕТ БАЗОВЫХ ДЕТАЛЕЙ
Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

РАСЧЕТ БАЗОВЫХ ДЕТАЛЕЙ






 

Базовые детали станков рассчитывают на жесткость и температурные деформации с точки зрения точности.

Жесткость базовых деталей во многом определяет погрешности обработки и характеризуется величиной смещения инструмента относительно заготовки из-за деформаций базовых деталей. Она опреде­ляет также работоспособность механизмов станка, которая зависит от распределения давлений в сопряжениях. Жесткость отдельных базовых деталей определяется собственной их жесткостью на изгиб, кручение, сдвиг и т. п., а жесткость соединений элементов харак­теризуется отношением нагрузки Р к соответствующему относитель­ному перемещению δ в стыке:

(2.11)

изгибная и крутильная жесткость

(3.11)

где f — вызываемая силой деформация; М —крутящий момент; θ 1 — угол закручивания на единицу длины.

Расчет на жесткость носит приближенный характер, вместе с тем все чаще применяют сложные, но более точные расчеты на основе метода конечных элементов с использованием современных элек­тронно-вычислительных машин, по мере совершенствования которых доля точных расчетов будет возрастать. Даже приближенный метод расчета полностью рассмотреть в ограниченном объеме учебника невозможно.

Приближенный технический расчет на жесткость в своей основе имеет следующие допущения: все силовые факторы сводятся к сосре­доточенным силам, т. е. распределенные нагрузки заменяют равно­действующими силами;

базовые детали имеют стенки постоянного сечения;

все рассчитываемые детали рассматривают как брусья, пластины или коробки соответствующей приведенной жесткости.

Нагрузку, действующую на элементы базовых деталей, представ­ляют в виде составляющих, действующих в плоскости стенок, обра­зующих основной контур сечения элемента, и в перпендикулярной к ним плоскости. Деформации элементов с жестким контуром сече­ния от нагрузки, действующей в плоскости стенок, относятся к так называемым общим деформациям, а от нагрузки, действующей в плоскости, перпендикулярной к стенкам — к местной. При рас­смотрении деформаций деталей типа станин, стоек, поперечин, рука­вов, хоботов и т. п. учитывают общие деформации изгиба, сдвига и кручения, как для сплошных брусьев, или, в случае необходимо­сти, деформации, связанные с искажением контура сечения, а также местные деформации направляющих или фланцев. Для деталей типа плоских столов, плит, суппортов и т. п. определяют главным образом деформации от нагрузки, действующей перпендикулярно их плоскости, рассматривая детали как однородные пластины (если в деталях коробчатой формы нагрузка приложена в плоскости пере­городок). Для деталей типа коробок рассматривают главным обра­зом деформации стенок коробки в плоскости меньшей жесткости. При определении деформаций деталей, перемещаемых по направ­ляющим (суппортов, столов, ползунов и т. п.), их рассматривают как балки на упругом основании, которым являются поверхностные слои направляющих.

Влияние конструктивного оформления элементов (окон, ребер, переменности сечений по длине и т. п.) учитывается введением не­которых приведенных параметров: приведенной толщины стенок, приведенной жесткости и т. д.

Для расчета базовых деталей составляют расчетную схему (рис.43) с действующими нагрузками.

Определяют деформации с использованием приближенных формул. Например, прогиб в се­редине пролета двухопорной балки

(4.11)

а прогиб свободного конца балки с заделанным концом

(5.11)

где Р — поперечная сила соответственно в середине пролета или на конце заделанной балки, Н; L — длина рабочего участка балки, см; (EJ)пр — приведенная жесткость балки на изгиб.

Угол закручивания балки от действия крутящего момента

(6.11)

 

где Мк — крутящий момент, Н•см; (GJp)пp — приведенная кру­тильная жесткость.

Приведенную жесткость элемента на изгиб или кручение опреде­ляют из условия равенства перемещений элемента, рассматриваемого как брус или пластина и как пространственная система, при выбран­ном частном виде нагружения только изгибающими силами или только крутящими моментами. Она зависит от конструктивного оформления базовой детали, расположения перегородок, толщины стенок и т. п.

 

Приведенная жесткость на изгиб станины из двух основных боковых стенок и перпендикулярных связу­ющих перегородок в направ­лении, перпендикулярном бо­ковым стенкам (рис.44, а),

(7.11)

а при диагональных перего­родках (рис. 44, б)

(8.11)

где k1, k2 коэффициенты, зависящие от числа п и расположения перегородок (табл.14); Jст — момент инерции сече­ния боковой стенки, см4; Е — модуль упругости материала ста­нины, Н/см2; SCT — площадь сечения боковой стенки, см2.

Перегородки практически не оказывают влияния на жесткость при изгибе в плоскости боковых стенок, и в этом случае момент инер­ции в выражении (EJ)пр берут относительно нейтральной линии Y—Y.

Приведенная крутильная жесткость этой же базовой детали с перпендикулярными перегородками

(9.11)

где В — ширина детали (расстояние между боковыми стенками), см; J'ст — момент инерции сечения боковой стенки на изгиб в вертикальной плоскости; G — модуль сдвига материала базовой детали, Н/см2.

При наличии диагональных перегородок

 
 


(10.11)

 

где k3 — коэффициент, учитывающий форму и число перегородок. Для станин с замкнутым контуром сечения приведенную крутильную жесткость определяют, как для полых труб:

 
 


(11.11)

 

где S — площадь замкнутого сечения по осевым линиям стенок* см2; δ — толщина стенки, см; L — периметр сечения, см.

Базовые детали типа пластин (основания, плоские столы, суп­порты, салазки) рассчитывают на перекос при изгибе пластины под действием внешних нагрузок (см. рис. 43, б):

 
 


(12.11)

 

Рассматривая пластину как балку на упругом основании, каждую составляющую угла перекоса можно представить в следующей виде:

 

 

(13.11)

 
 


где b— ширина плиты, см; m = коэффициент жесткости плиты; k — коэффициент жесткости упругого основания, прибли­зительно k = 1256 Н/см2; J — момент инерции поперечного сечения; kql, kq2, kM — коэффициенты, определяемые в зависимости от геометрических параметров плиты и длины приложения распреде­ленной нагрузки.

Расчет на жесткость базовых деталей типа коробок сводится к определению перемещения стенки в точках приложения внешних сил в направлении, перпендикулярном к плоскости стенки,

(14.11)

 

где nl, , n2, n3, n 4 — коэффициенты, учитывающие связь рабочей, стенки с остальным корпусом, влияние ребер, бобышки, отверстий; a — половина наибольшего габаритного размера стенки; μ — коэф­фициент Пуассона.

Толщина стенки существенно влияет на величину деформации, поэтому стенки шпиндельных бабок, воспринимающие осевую силу, делают утолщенными.

Полученные в результате расчета базовых деталей упругие пе­ремещения пересчитывают на соответствующие относительные пере­мещения инструмента и обрабатываемой заготовки в направлении, определяющем точность обработки. Для токарных станков таким перемещением будет перемещение резца перпендикулярно к обраба­тываемой поверхности в точке резания; для сверлильных стан­ков — перекос оси сверла относительно поверхности обрабатывае­мой детали; для фрезерных — перекос оси инструмента и относи­тельные смещения детали и инструмента перпендикулярно к обра­батываемой поверхности

Температурные деформации отдельных элементов и всей детали определяют при допущении, что эти смещения пропорциональны средней температуре:

(15.11)

где ε — коэффициент линейного расширения, для чугуна ε ≈ 10-5 К-1.

Общее температурное перемещение рабочих органов станка по­лучают суммированием отдельных температурных деформаций. Сум­марные температурные смещения необходимо ограничивать исходя из допустимых погрешностей обработки.

Основные способы уменьшения температурных деформаций сво­дятся к следующему.

1. Уменьшение теплообразования в двигателях, опорах и пере­дачах в результате применения жидкостной смазки и трения качения. Совершенствование системы смазывания строгим нормирова­нием количества подаваемого смазочного материала, что способствует уменьшению тепловыделения и сокращению потерь.

2. Тепловая изоляция источников тепла от основных деталей несущей системы и интенсивный отвод образующейся в них теплоты, минуя несущую систему.

3. Целесообразное расположение источников тепла, как правило, в верхней части станка, а наиболее мощных источников теплообра­зования (двигателя главного привода, резервуаров систем смазы­вания, охлаждения и гидропривода) вынесением на достаточное удаление за пределы станка, как это делают в современных преци­зионных станках.

4. Взаимная компенсация температурных деформаций за счет внесения целесообразных изменений в конструкцию базовых деталей для улучшения баланса температурных деформаций. Для регулиро­вания величины температурной деформации иногда используют специальные материалы с коэффициентом линейного расширения, отличным от обычного литейного чугуна. Так, легированный нике­лем чугун (36 % Ni) имеет коэффициент линейного расширения в 5 раз меньший, чем серый чугун, а у сплавов типа инвар этот коэф­фициент меньше в 10—12 раз. Компенсация температурных дефор­маций возможна также при искусственном подогреве отдельных частей несущей системы, например, теплым воздухом от двигателей.

5. Автоматическая компенсация температурных смещений путем измерения деформаций наиболее важных узлов и внесения поправок в их расположение от специального привода микроперемещений.

 

 







Дата добавления: 2014-11-10; просмотров: 1452. Нарушение авторских прав; Мы поможем в написании вашей работы!



Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...

Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...

Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...

Образование соседних чисел Фрагмент: Программная задача: показать образование числа 4 и числа 3 друг из друга...

Шрифт зодчего Шрифт зодчего состоит из прописных (заглавных), строчных букв и цифр...

Краткая психологическая характеристика возрастных периодов.Первый критический период развития ребенка — период новорожденности Психоаналитики говорят, что это первая травма, которую переживает ребенок, и она настолько сильна, что вся последую­щая жизнь проходит под знаком этой травмы...

Медицинская документация родильного дома Учетные формы родильного дома № 111/у Индивидуальная карта беременной и родильницы № 113/у Обменная карта родильного дома...

Основные разделы работы участкового врача-педиатра Ведущей фигурой в организации внебольничной помощи детям является участковый врач-педиатр детской городской поликлиники...

Ученые, внесшие большой вклад в развитие науки биологии Краткая история развития биологии. Чарльз Дарвин (1809 -1882)- основной труд « О происхождении видов путем естественного отбора или Сохранение благоприятствующих пород в борьбе за жизнь»...

Studopedia.info - Студопедия - 2014-2024 год . (0.009 сек.) русская версия | украинская версия