Студопедия Главная Случайная страница Задать вопрос

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Элементы теории самоорганизованной критичности





Системы, состоящие из многих взаимодействующих элементов, постоянно самоорганизуются и могут достичь некоторого критического состояния, в котором даже малое событие вызывает цепную реакцию, могущую привести к катастрофе. Когда происходит что-то непредвиденное или катастрофа, то всегда ищут причину. Например, когда узнали о гибели динозавров по отпечаткам на окаменелостях, одни палеонтологи приписали их исчезновение падению крупного метеорита, другие — извержению вулкана. Землетрясение геологи связывают с неустойчивостью вдоль разлома земной коры. Когда рушится рынок акций, находят где-то неконтролируемую продажу товара.

При исследовании сложных систем часто пользуются теми же методами, что и при исследовании простых систем, так как они хорошо разработаны и проверены. Большую систему делят на малые подсистемы, изучают каждую из них по отдельности и считают, что реакция или отклик в каждой из них пропорционален внешнему возмущению. Описывают динамику больших систем в терминах равновесного состояния, которое изредка нарушается внешним воздействием. Но оказалось, что многие хаотические системы не поддаются такому анализу. П. Баком, К.Визенфельдом и Ч.Тангом (США) была разработана теория самоорганизованной критичности.

Согласно этой теории, многие составные части системы эволюционируют естественным образом к критическому состоянию,


в котором малое возмущение может вызвать цепную реакцию, способную повлиять на любое число элементов системы. И хотя в составных частях происходит больше незначительных событий, чем катастроф, цепные реакции разных масштабов вошли в динамику системы, т. е. малые события вызывает тот же механизм, что и крупные. Кроме того, составные части системы не достигают равновесия, а эволюционируют от одного метастабильного состояния к другому. Считается, что глобальные характеристики не зависят от микроскопических механизмов, поэтому их нельзя понять, разбивая систему на подсистемы и анализируя их отдельно. Эта модель исследовалась и улучшила понимание процессов в эволюции земной коры, на рынке акций, в экосистемах и других больших системах, которые ранее анализировали по частям.

Идея теории самоорганизованной критичности началась с наблюдений и опытов с кучей песка. Г.Хелд, проводивший эксперименты по компьютерному моделированию, разработал устройство, которое медленно и равномерно — по одной песчинке — насыпало песок на круглую подложку. Песчинки сначала оставались в месте падения, потом громоздились в кучу, а когда склон становился очень крутым и достигалось критическое состояние, одна песчинка вызывала катастрофу. Песчинка падала сначала спокойно, но, достигнув неустойчивых песчинок, вызывала лавину — разновидность цепной реакции или ветвящегося процесса. Как только «активные» песчинки скатывались с кучи, процесс прекращался. Куча сохраняла свою крутизну и высоту, потому что вероятности прекращения активности и ее ветвления в среднем равны. Если крутизна будет меньше критической, то лавины будут слабее, а при большей кривизне — значительно возрастут.

Эксперименты с мокрым песком показали, что сначала лавины будут меньшего размера, чем в сухой куче, и крутизна превзойдет критическую, но затем резко произойдут обвалы и падения. Такая система неустойчива по многим параметрам, а ее критическое состояние весьма

устойчиво («суб- и суперкритические» крутизны стремятся стать «критическими», сбрасывая лишние песчинки). Хотя песок сыплется с постоянной скоростью, его количество меняется со временем, и график этой величины — хаотический сигнал разных длительностей. Возникающие при этом структуры, полученные при различных типах деформации мокрого песка в Институте горного дела СО РАН (Новосибирск, 1984), упорядочены (рис. 13.9).

Сигнал называют фликкер-шумом или шумом мерцания типа


1/f, если прошлые события в памяти сохраняются. «Белый», или «случайный», шум означает отсутствие корректировки динамики с прошлыми событиями. Шум мерцания широко распространен в природе: в активности Солнца и излучении галактик, в протекающем через резистор токе, в потоке воды в реке. Шум мерцания содержит наборы всех длительностей и всех амплитуд сигналов, возникающих, когда система, находящаяся в критическом состоянии, порождает цепные реакции всех амплитуд и длительностей.

Построенная в то же время математическая модель помогла понять динамику землетрясений, экосистем и турбулентности в жидкости. Еще в 1956 г. геологи Бено Гутенберг и Чарлз Рихтер (введший шкалу Рихтера) установили закон связи числа сильных и слабых землетрясений, который носит их имена. Согласно этому закону, число землетрясений, высвобождающих за год определенное количество энергии Е, пропорционально Е-b, где b 1,5, и не зависит от географического района. Следовательно, сильные землетрясения происходят реже слабых, и все они связаны с одним и тем же процессом. В качестве последнего обычно называют механизм проскальзывания: блоки коры слипаются, а затем скользят относительно других блоков, образуя разломы. При скольжении блоков возникшее напряжение снимается и распространяется на соседние районы.

Этот механизм был проверен на опытах, поставленных В.Бобровым и М.Лебедкиным, наблюдавшими «землетрясения», амплитуда и частота которых были связаны степенным законом. Они провели опыты с алюминиевым и ниобиевым стержнями и получили близкие результаты, хотя механизмы процессов в земной коре и модели отличались. Потом была создана компьютерная модель земной коры, состоящая из двух плит, — упругой и жесткой, взаимодействующих посредством трения. На этой модели результаты проверялись несколько раз, при этом записывались распределения сил до и после взаимодействия, а не детали динамики. Сначала регистрировались слабые «землетрясения», потом система эволюционировала к критическому состоянию, в котором регистрируются как слабые, так и сильные «землетрясения». Равномерное увеличение силы в целом уравновешивалось высвобождением ее на границе. Энергия, выделяемая во время землетрясения, связана в модели с числом событий проскальзывания, происходящих после возникновения одиночной неустойчивости в каком-то «эпицентре». Если подсчитать число землетрясений каждой величины за длительный период, то получается закон Гутенберга—Рихтера (рис. 13.10). Катастрофические землетрясения представлены частью графика, относящейся к более высоким значениям энергии, а слабые — к низким. С.Обухов показал, что в четырех и более измерениях отдельные ветвящиеся процессы не-


зависимы и b = 1,5. Это подтверждает предположение о том, что земная кора находится в критическом состоянии.

Эта модель не только объясняет эволюцию землетрясений, но и описывает распределение их эпицентров. Степенные законы и ранее применяли для анализа распределений таких объектов, как горы, облака, галактики, вихри в турбулентных потоках. Показатель степени числа r вычисляется по числу объектов внутри сферы радиуса r. Такое распределение называют фракталом, и число фракталов в природе велико. Авторы описываемой теории считают фракталы мгновенными «срезами» самоорганизующихся критических процессов. Фрактальные структуры и шум мерцания — пространственные и временные «отпечатки» самоорганизованной критичности.

Задача прогнозирования землетрясений осложнена зависимостью от начальных условий; кроме того, иногда сказывается влияние событий, далеких от эпицентра. Численные эксперименты показали, что неопределенность начальных условий растет со временем по степенному, а не по экспоненциальному закону, как в системах с развитым хаосом, т.е. соответствует эволюции на грани хаоса или состоянию «слабого хаоса». В этом проявляется самоорганизованная критичность, и поэтому некоторые


прогнозы возможны. Например, если погода есть явление хаотическое и 100 обсерваторий собирают достаточно информации на двухдневный прогноз, то 1000 обсерваторий могли бы обеспечить прогноз на четыре дня. Если погода — явление слабохаотическое, то 1000 обсерваторий обеспечили бы прогноз на 20 дней вперед. Вместо погоды можно говорить о куче песка или землетрясениях. Например, если известно, что распределение автомобилей на дорогах описывается шумом мерцания, то движения с попеременными остановками и троганием с места можно рассматривать как критические лавины, которые распространяются по потоку автомобилей.

В рассмотренных выше случаях теория самоорганизованной критичности применялась к системам с сохраняющимся числом частиц. Анализируя игру Конуэя «Жизнь», имитирующую возрастание сложности в биосистеме, авторы данной теории установили, что распределение живых ячеек является фракталом, который можно описать степенным законом с показателем степени 1,7. Таким образом, число живых ячеек колебалось со временем так же, как размеры лавин в куче песка, и система самоорганизовалась в критическое состояние.

Флуктуации в экономике, как заключили Ф.Андерсон и Б.Артур, также могут быть вызваны лавинами в самоорганизованном критическом состоянии системы. Б. Мандельброд из корпорации IBM проанализировал такие показатели, как индекс Доу-Джонса, и обнаружил флуктуации, соответствующие шуму мерцания. Различные метастабильные состояния экономики могут быть рассмотрены как метастабильные состояния кучи песка или земной коры. В других экономических моделях состояния более устойчивы, и большие агрегатные флуктуации могут возникать только от внешних ударов, влияющих на разные секции одинаково. Но причины их отыскать трудно, пример тому — депрессия 30-х гг. XX в. в США. В модели самоорганизованной критичности причины могут быть и при отсутствии таких «толчков». Большие флуктуации являются внутренним и неизбежным свойством динамики этой модели экономики. Такая проверка была проделана, и оказалось, что при изменении спроса на продукт нескольких компаний случайным образом на малую величину может возникнуть «лавина» в продаже и производстве.

Вопросы для самопроверки и повторения

1.В чем заключается явление самоорганизации? Приведите примеры из области химии и физики. Почему они не могут быть описаны с позиций классической науки?

2. Как строится термодинамика открытых систем? Что такое устойчивые и неустойчивые равновесные состояния? Поясните понятия простой и сложной системы.

3. Как возникают структуры из хаоса в неорганической и живой материях? Каковы условия их образования? Приведите примеры из разных областей естествознания.


4. Что такое синергетика и каково ее значение для современной картины мира? Каков механизм эволюции в соответствии с представлениями синергетики?

5. Какие этапы можно выделить в развитии самоорганизующихся систем? Что такое фазовое пространство и как оно используется в моделировании сложных систем?

6. Поясните понятие диссипативной структуры по И.Пригожину.

7. Каково соотношение случайного и закономерного в концепции развития? Какую роль сыграл принцип элементарного беспорядка в естествознании?

8. Поясните понятия «хаос», «бифуркация», «катастрофа». Как теория катастроф связана с синергетикой?

9. Какие системы могут находиться в высокоупорядоченном состоянии? Каковы необходимые условия возникновения «самоорганизации» и существуют ли достаточные?

10. Дайте представление о прямой и обратной связях в сложной систе
ме. Поясните связь процессов в земной коре с теорией самоорганизован
ной критичности. Дайте примеры использования этой теории.






Дата добавления: 2014-11-10; просмотров: 265. Нарушение авторских прав

Studopedia.info - Студопедия - 2014-2017 год . (0.091 сек.) русская версия | украинская версия