Студопедия — Проводов с алюминиевыми жилами при температуре жилы 65°С, мОм/м
Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Проводов с алюминиевыми жилами при температуре жилы 65°С, мОм/м






Сечение фазного провода, мм2     Полное сопротивление zn для сечения нулевого провода, мм2
2, 5                    
2, 5 29, 64
  24, 08 18, 52
  15, 43 12, 34 9, 88
  9, 88 7, 41 5, 92
  5, 92 4, 43 3, 7 3, 35
  5, 19 3, 7 2, 96 2, 54 2, 22
  4, 77 3, 35 2, 54 2, 12 1, 8 1, 59
  3, 06 2, 22 1, 8 1, 48 1, 27 1, 13
  2, 02 1, 59 1, 27 1, 09 0, 92
  1, 45 1, 13 0, 92 0, 78
  1, 37 1.05 0, 84 0, 7 0, 62
    0, 99 0, 82 0, 67 0, 52
  0, 95 0, 53 0, 59 0, 51

В. Пример расчёта токов трёхфазных КЗ

 

Для расчётной схемы (рис. 2.10, а) составить схему замещения, рассчитать сопротивления элементов и указать их на схеме замещения, определить токи трёхфазных КЗ.

Результаты расчётов занести в сводную ведомость токов КЗ (табл. 2.18).

Некоторые данные расчётной схемы:

автоматический выключатель 1QF типа ВА55-41, I ном.а = 1000 А, I ном.расц = 800 А,

выбран по расчётному току I р = 809 А;

автоматический выключатель QF1 типа ВА55-37, I ном.а = 250 А, I ном.расц = 200 А,

выбран по расчётному току I р = 183 А;

автоматический выключатель QF типа ВА51-31, I ном.а = 100 А, I ном.расц = 63 А,

выбран по расчётному току I р = 59, 2 А.

 

Рис. 2.10. Расчётная схема (а), схема замещения без учёта переходных

сопротивлений контактов (б), упрощённая схема замещения цепи КЗ )

Р е ш е н и е

На основе расчётной схемы составляем схему замещения (рис. 2.10, б) и указываем на ней расчётные точки КЗ. Переходные сопротивления контактов на схеме замещения не показываем, а будем учитывать их совокупность (включая контакт в месте КЗ) введением в расчёт результирующего сопротивления цепи для каждой точки КЗ добавочного активного сопротивления R к в пределах 15–30 мОм (см. 2.7.2, пункт Б).

Рассчитываем сопротивления элементов схемы замещения и наносим их на схему.

1. Эквивалентное сопротивление системы до понижающего трансформатора, приведённое к ступени низшего напряжения, мОм

 

,

 

где U срНН = U ср2 = 0, 4 кВ = 400 В;

U срВН = U ср1 = 10.5 кВ = 10.5 . 103 В;

I кВН = 3, 2 кА (берётся из расчёта токов КЗ на стороне ВН цеховой ТП).

2. Сопротивление понижающего трансформатора Т1 определяем по табл.2.11:

R Т! = 5, 5 мОм; Х Т1 = 17, 1 мОм.

3. Сопротивления катушек максимальных расцепителей автоматических выключателей определяем по табл. 2.13 в зависимости от их номинальных токов:

1QF: R1QF = 0, 1 мОм; Х1QF = 0, 1 мОм;

QF1: RQF1 = 0, 34 мОм; ХQF1 = 0, 42 мОм;

QF: RQF = 1, 3 мОм; ХQF = 1, 2 мОм.

4. Сопротивления кабельных линий W1 и W2, мОм, определяем используя удельные сопротивления (r 0 и x 0), взятые из табл. 2.15 в зависимости от сечений жил:

кабельная линия W1:

для кабеля АВВГ–3 70 + 1 35: r 0 = 0, 447 мОм/м; x 0 = 0, 082 мОм/м;

т. к. в линии два параллельных кабеля;

;

кабельная линия W2:

для кабеля АВВГ–3 35 + 1 16: r 0 = 0, 894 мОм/м; x 0 = 0, 088 мОм/м;

5. Сопротивления шинопровода ШРА-1, мОм, определяем используя удельные сопротивления r 0 = 0, 21 мОм/м и x 0 = 0, 21 мОм/м, взятые из табл. 2.14 для ШРА4-250:

Упрощаем схему замещения, вычисляем эквивалентные сопротивления на участках между точками КЗ, мОм, и указываем их на схеме (рис. 2.10, в):

Вычисляем результирующие активное, индуктивное и полное сопротивления цепи до каждой точки КЗ, мОм, (с учётом принятых величин активных переходных сопротивлений контактов R к до этих точек) и заносим их в сводную ведомость токов КЗ (табл. 2.18):

где R к1 – суммарное переходное сопротивление контактов в цепи КЗ до точки К1; принято равным 15 мОм, т. к. точка К1 в РУ 0, 4 кВ цеховой ТП;

где R к2 – суммарное переходное сопротивление контактов в цепи КЗ до точки К2; принято равным 20 мОм, т. к. точка К2 в первичном цеховом распределительном устройстве, каковым является ШРА-1;

где R к3 – суммарное переходное сопротивление контактов в цепи КЗ до точки К3; принято равным 25 мОм, т. к. точка К3 на зажимах электроприёмника, питаемого от первичного цехового распределительного устройства (ШРА-1);

Для каждой точки КЗ определяем отношение Х рез/ R рез:

Для расчёта ударных токов определяем по графику (рис. 2.9) ударные коэффициенты К у в зависимости от отношения Х рез/ R рез для каждой точки трёхфазного КЗ:

К у1 = 1, 05; К у2 = 1; К у3 = 1.

Определяем коэффициенты q, необходимые для расчёта в каждой точке наибольшего действующего значения полного тока трёхфазного КЗ:

.

Определяем в каждой точке токи трёхфазного КЗ и заносим их в табл. 2.18:

а) действующее значение периодической составляющей тока трёхфазного КЗ, кА:

 

 

б) ударный ток трёхфазного КЗ, кА:

 

в) наибольшее действующее значение полного тока трёхфазного КЗ, кА:

 

 

Г. Пример расчёта токов однофазного КЗ

 

Для расчётной схемы (рис. 2.10, а) составить схему замещения, рассчитать сопротивления элементов и указать их на схеме замещения, определить токи однофазного КЗ в каждой точке. Результаты расчётов занести в сводную ведомость токов КЗ (табл. 2.18).

Р е ш е н и е.

На основе расчётной схемы (рис. 2.10, а) и уравнения (*) составляем упрощённую схему замещения для расчёта токов однофазных КЗ (рис. 2.11) и указываем на ней расчётные точки КЗ. В этой схеме вместо сопротивлений различных последовательностей указываем для каждого элемента сопротивления петли «фаза – нуль» (кроме трансформатора). Переходные сопротивления контактов цепи однофазного КЗ в схеме не указываем, а будем учитывать их совокупность (включая контакт в месте КЗ) введением в расчёт результирующего сопротивления цепи до каждой точки КЗ добавочного активного сопротивления R к в пределах 15–30 мОм (см. 2.7.2, пункт Б).

 

 

 

Рис. 2. 11. Упрощённая схема замещения цепи однофазного КЗ без учёта

переходных активных сопротивлений контактов

 

Определяем сопротивления элементов схемы замещения току однофазного КЗ и указываем их на схеме (рис. 2.11).

1. Активное и индуктивное сопротивления силового трансформатора Т1 (схема соединения обмоток Y/YN) току однофазного КЗ определяем по табл. 2.11:

= 66, 6 мОм; = 183, 2 мОм.

2. Активное и индуктивное сопротивления, мОм, петли «фаза – нуль» кабельных линий W1 и W2 определяем по их удельным активным сопротивлениям r 0 (табл. 2.15) и удельным полным сопротивлениям петли «фаза – нуль» z 0п, (табл. 2.17) в зависимости от сечения жил кабелей:

кабельная линия W1:

для кабеля АВВГ–3 70 + 1 35: r 0 = 0, 447 мОм/м; z 0п = 1, 59 мОм/м;

т.к. в линии два параллельных кабеля;

кабельная линия W2:

для кабеля АВВГ–3 35 + 1 16: r 0 = 0, 894 мОм/м; z 0п = 3, 35 мОм/м;

3. Активное и индуктивное сопротивления, мОм, петли «фаза – нуль» шинопровода ШРА-1 определяем по удельным сопротивлениям петли «фаза – нуль» (табл. 2.14):

для шинопровода ШРА4-250: мОм/м; мОм/м;

Вычисляем результирующие активные, индуктивные и полные сопротивления, мОм, цепи однофазного КЗ до каждой точки (с учётом принятых величин переходных сопротивлений контактов R к до этих точек):

где R к1 – суммарное активное переходное сопротивление контактов в цепи КЗ до точки К1, принятое равным 15 мОм, т. к. точка К1 в РУ 0, 4 кВ цеховой ТП;

где R к2 – суммарное активное переходное сопротивление контактов в цепи КЗ до точки К2, принятое равным 20 мОм, т. к. точка К2 в первичном цеховом распределительном устройстве, каковым является ШРА-1;

где R к3 – суммарное активное переходное сопротивление контактов в цепи КЗ до точки К3, принятое равным 25 мОм, т. к. точка К3 на зажимах электроприёмника, питаемого от первичного цехового распределительного устройства (ШРА-1);

Определяем в каждой точке действующее значение периодической составляющей тока однофазного КЗ, кА, и заносим в табл. 2.18:

 

Таблица 2.18







Дата добавления: 2014-11-10; просмотров: 992. Нарушение авторских прав; Мы поможем в написании вашей работы!



Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...

Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...

Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...

Методика исследования периферических лимфатических узлов. Исследование периферических лимфатических узлов производится с помощью осмотра и пальпации...

Роль органов чувств в ориентировке слепых Процесс ориентации протекает на основе совместной, интегративной деятельности сохранных анализаторов, каждый из которых при определенных объективных условиях может выступать как ведущий...

Лечебно-охранительный режим, его элементы и значение.   Терапевтическое воздействие на пациента подразумевает не только использование всех видов лечения, но и применение лечебно-охранительного режима – соблюдение условий поведения, способствующих выздоровлению...

ТЕРМОДИНАМИКА БИОЛОГИЧЕСКИХ СИСТЕМ. 1. Особенности термодинамического метода изучения биологических систем. Основные понятия термодинамики. Термодинамикой называется раздел физики...

Травматическая окклюзия и ее клинические признаки При пародонтите и парадонтозе резистентность тканей пародонта падает...

Подкожное введение сывороток по методу Безредки. С целью предупреждения развития анафилактического шока и других аллергических реак­ций при введении иммунных сывороток используют метод Безредки для определения реакции больного на введение сыворотки...

Studopedia.info - Студопедия - 2014-2024 год . (0.011 сек.) русская версия | украинская версия