Студопедия — Переменный ток меняется не только по величине и направлению, но также и по скорости своего изменения
Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Переменный ток меняется не только по величине и направлению, но также и по скорости своего изменения






Переменный ток, проходя по виткам катушки, создает переменное магнитное поле. Магнитные линии этого поля, пересекая витки своей же катушки, индуктируют в них э. д. с. самоиндукции.

На рис. 139 кривая i показывает изменение переменного тока в катушке. Как было уже указано, величина э. д. с. самоиндукции зависит от скорости изменения тока и от индуктивности катушки. Но так как индуктивность катушки в нашем случае остается без изменения, э. д. с. самоиндукции будет зависеть только от скорости изменения тока. Выше было показано, что наибольшая скорость изменения тока имеет место около нулевых значений тока. Следовательно, наибольшее значение э. д. с. самоиндукции имеет в те же моменты.

 

-25-

В момент а ток резко и быстро увеличивается от нуля, а поэтому, как следует из вышеприведенной формулы, э. д. с. самоиндукции (кривая eL) имеет отрицательное максимальное значение. Так как ток увеличивается, то э. д. с. самоиндукции, по правилу Ленца, должна препятствовать изменению (здесь увеличению) тока. Поэтому э. д. с. самоиндукции при возрастании тока будет иметь направление, обратное току (положение б), что следует также из указанной формулы. Скорость изменения тока по мере приближения его к максимуму уменьшается. Поэтому э. д. с. самоиндукции также уменьшается, пока, наконец, при максимуме тока, когда изменения его будут равны нулю, она не станет равной нулю (положение в).

Переменный ток, достигнув максимума, начинает убывать. По правилу Ленца, э. д. с. самоиндукции препятствует току убывать и, направленная уже в сторону протекания тока» будет его поддерживать (положение г).

При дальнейшем изменении переменный ток быстро убывает до нуля. Резкое уменьшение тока в катушке повлечет за собой также быстрое уменьшение магнитного поля и в результате пересечения магнитными линиями витков катушки в них будет индуктироваться наибольшая э. д. с. самоиндукции (положение д).

Во вторую половину периода изменения тока картина повторяется и снова при возрастании тока э. д. с. самоиндукции будет препятствовать ему, имея направление, обратное току (положение е).

При убывании тока э. д. с. самоиндукции, имея направление, совпадающее с током, будет поддерживать его, не давая ему исчезнуть сразу (положение з).

На рисунке видно, что э. д. с. самоиндукции отстает по фазе от тока на 90°, или на 1/4 периода. Так как магнитный поток совпадает по фазе с током, то можно сказать, что э. д. с, наводимая магнитным потоком, отстает от него по фазе на 90°, или на 1/4 периода.

Нам уже известно, что две синусоиды, сдвинутые одна относительно другой на 90', можно изобразить векторами, расположенными под углом 90° (рис. 140).

Так как э. д. с. самоиндукции в цепях переменного тока непрерывно противодействует изменениям тока, то, чтобы ток мог протекать по виткам катушки, напряжение сети должно уравновешивать э. д. с. самоиндукции. Иными словами, напряжение сети в каждый момент времени должно быть равно и противоположно э. д. с. самоиндукции.

Вектор напряжения сети, равный и противоположный э. д. с. самоиндукции EL, мы обозначим через U (рис. 141). Только при условии, что к зажимам катушки приложено напряжение сети,

 

-26-

равное и противоположное э. д. с. самоиндукции, и, стало быть, это напряжение сети U уравновешивает э. д. с. самоиндукции ЕL по катушке может проходить переменный ток I. Но в этом случае напряжение сети U будет опережать по фазе ток I на 90°

В цепи с индуктивностью ток I отстает от приложенного напряжения U по фазе на 1/4 периода.

На векторной диаграмме этому сдвигу фаз между напряжением U и током I соответствует угол а = 90°

Возвращаясь к рис. 139, мы видим, что ток i по катушке будет проходить и тогда, когда напряжение сети (кривая uL.) равно нулю (положение в), и даже тогда, когда напряжение сети направлено в сторону, обратную току (положение г и з).

Можно показать, что скорость изменения, синусоидального тока пропорциональна угловой частоте ω. Следовательно, действующее значение э. д. с. самоиндукции EL может быть найдено по формуле

Как было отмечено выше, напряжение, приложенное к зажимам цепи, содержащей индуктивность, должно быть по величине равно э. д. с. самоиндукции:

Поэтому

Обозначая

Формула закона Ома для цепи переменного тока, содержащей индуктивность, имеет вид

Величина xL называется индуктивным сопротивлением цепи, или реактивным сопротивлением индуктивности, и измеряется в Омах. Таким образом, индуктивное

-27-

сопротивление представляет собой своеобразное препятствие, которое цепь с индуктивностью оказывает изменениям тока в ней. Оно равно произведению индуктивности на угловую частоту:

Так как индуктивное сопротивление проводника зависит от частоты переменного тока, то сопротивление катушки, включаемой в цепь токов различной частоты, будет различным.

Та часть напряжения сети, которая преодолевает (уравновешивает) э. д. с. самоиндукции, называется реактивной слагающей н а п р я ж е н и я.

Рассмотрим теперь, какая мощность потребляется от источника переменного напряжения, если к зажимам его подключена индуктивность.

На рис. 342 даны кривые мгновенных значений напряжения, тока и мощности для этого случая. Мгновенное значение мощности равно произведению мгновенных значений напряжения и тока:

Из чертежа видно, что если u и i имеют одинаковые знаки, то кривая р располагается выше оси wt. Если же u и i имеют разные знаки, то кривая р располагается ниже оси wt.

В первую четверть периода ток, а вместе с ним и магнитный поток катушки увеличиваются. Катушка потребляет из сети мощность. Площадь, заключенная между кривой р и осью wt, есть работа (энергия) электрического тока. В первую четверть периода энергия, потребляемая из сети, идет на создание магнитного поля вокруг витков катушки (мощность положительная). Количество энергии, запасаемое в магнитном поле за время увеличения тока, можно определить по формуле

Во вторую четверть периода ток убывает. Э. д. с. самоиндукции, которая в первую четверть периода стремилась препятствовать возрастанию тока, теперь, когда ток начинает уменьшаться, будет препятствовать ему уменьшаться. Сама катушка становится как бы генератором электрической энергии. Она возвращает в сеть энергию, запасенную в ее магнитном поле. Мощность отрицательна, и на рис. 142 кривая р располагается ниже оси wt.

Во вторую половину периода явление повторяется. Таким образом, между источником

-28-

переменного напряжения и катушкой, содержащей индуктивность, происходит обмен

мощностью. В течение первой и третьей четвертей периода мощность поглощается катушкой, в течение второй и четвертой четвертей мощность возвращается источнику.

В этом случае в среднем расхода энергии не будет, несмотря на то что на зажимах цепи есть напряжение U и в цепи протекает ток I. Следовательно, средняя, или активная, мощность цени, носящей чисто индуктивный характер, равна нулю.

Из графика, изображенного на рис. 142, видно, что мгновенная мощность цепи с индуктивностью два раза в течение каждого периода (когда wt = 45°, 135° и т. д.) достигает максимального значения. Этой величиной принято характеризовать количественно процесс обмена энергией между источником и магнитным полем. Ее называют реактивной мощностью и обозначают буквой Q.

Учитывая, что в рассматриваемой цепи U = IxL, получаем следующее выражение для реактивной мощности:

4.6.Цепь переменного тока с ёмкостью С.

Если в цепь постоянного, тока включить конденсатор, то в течение очень короткого времени после включения по цепи потечет зарядный ток. После того как конденсатор зарядится до напряжения, равного напряжению источника, кратковременный ток в цепи прекратится. Следовательно, для постоянного тока конденсатор представляет собой разрыв цепи, или, иными словами, бесконечно большое сопротивление.

Если же конденсатор включить в цепь переменного тока, то он будет заряжаться попеременно то в одном, то в другом направлении. При этом в цепи будет проходить переменный ток.

В момент включения напряжение на конденсаторе равно нулю. В течение первой четверти периода, когда напряжение сети будет возрастать (рис. 143), конденсатор будет заряжаться.

По мере накопления зарядов на обкладках конденсатора напряжение конденсатора увеличивается. Когда напряжение сети к концу первой четверти периода достигнет максимального значения Um, напряжение конденсатора также станет равным Um, заряд конденсатора прекращается и ток в цепи становится равным нулю. Ток в цепи конденсатора можно определить по формуле

-29-

где ∆ q — количество электричества, протекающее по цепи за время ∆ t.

Из электростатики известно:

где С — емкость конденсатора;

u — напряжение сети;

uc — напряжение конденсатора. Окончательно для тока имеем

Из последнего выражения видно, что, когда ∆ u/∆ t максимально (положения a, в, d), i также максимально.

Когда ∆ u/∆ t = 0 (положения б, г на рис. 143), то i также равно нулю.

Во вторую четверть периода напряжение сети будет уменьшаться, и конденсатор начнет разряжаться. Ток в цепи меняет свое направление на обратное.

В следующую половину периода напряжение сети меняет свое направление и наступает перезаряд конденсатора и затем снова его разряд.

Из рис. 143 видно, что ток I в цепи с емкостью в своих изменениях опережает по фазе напряжение конденсатора на 1/4 периода, или 90°.

Сравнивая векторные диаграммы цепей с индуктивностью и емкостью, мы видим, что индуктивность и емкость на фазу тока влияют прямо противоположно.

Пользуясь высшей математикой, можно доказать, что ток в цепи с емкостью пропорционален напряжению Uc, приложенному к конденсатору, угловой частоте w и величине емкости конденсатора C:

Обозначим

Величина Хс называется емкостным сопротивлением, или реактивным сопротивлением емкости, и измеряется в Омах. Выражение закона Ома для цепи переменного тока, содержащей емкость, имеет вид

Та часть напряжения сети, которая приложена к конденсатору, называется емкостным падением напряжения (или реактивной слагающей напряжения) и обозначается Uc:

Емкостное сопротивление Хс, так же как индуктивное сопротивление xL, зависит от частоты переменного тока.

 

-30-

Но если с увеличением частоты индуктивное сопротивление увеличивается, то емкостное сопротивление, наоборот, будет уменьшаться.

На рис. 144 показана кривая мгновенной мощности в цепи с емкостью. Из чертежа видно, что в первую четверть периода цепь с емкостью забирает из сети энергию, которая запасается в электрическом поле конденсатора.

В следующую четверть периода конденсатор разряжается на сеть, отдавая ей ранее запасенную в нем энергию.

За вторую половину периода явление колебаний энергии повторяется. Таким образом, в цепи с емкостью происходит лишь обмен энергией между сетью и конденсатором без ее потерь.

Поэтому средняя за период мощность, или активная мощность, цепи с емкостью равна нулю, как и в цепи с индуктивностью.

Из графика, изображенного на рис. 144, видно, что мгновенная мощность в цепи с емкостью два раза в течение каждого периода (когда wt = 45°, 135° и т. д.) достигает максимального значения.

Этой величиной принято характеризовать количественно процесс обмена энергии между источником и электрическим полем конденсатора. Ее также называют реактивной мощностью и обозначают буквой Q.

Учитывая, что в рассматриваемой цепи U = IХc, получим следующее выражение для реактивной мощности:

При включении в цепь переменного тока конденсатора (рис. 6, а) происходит непрерывное перемещение электрических зарядов. При увеличении напряжения ток в цепи конденсатора будет зарядным, а при уменьшении - разрядным. Поэтому ток в цепи, содержащей конденсатор, опережает напряжение на угол π /2 радиан (рис. 6, б).

На векторной диаграмме (рис. 6, в) вектор тока Ic опережает вектор приложенного напряжения

 

-31-

Uc.

Рис. Электрическая цепь с конденсатором:

а - схема, б - линейная диаграмма тока, напряжения, в - векторная диаграмма







Дата добавления: 2014-11-10; просмотров: 915. Нарушение авторских прав; Мы поможем в написании вашей работы!



Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...

Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...

Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...

Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...

ФАКТОРЫ, ВЛИЯЮЩИЕ НА ИЗНОС ДЕТАЛЕЙ, И МЕТОДЫ СНИЖЕНИИ СКОРОСТИ ИЗНАШИВАНИЯ Кроме названных причин разрушений и износов, знание которых можно использовать в системе технического обслуживания и ремонта машин для повышения их долговечности, немаловажное значение имеют знания о причинах разрушения деталей в результате старения...

Различие эмпиризма и рационализма Родоначальником эмпиризма стал английский философ Ф. Бэкон. Основной тезис эмпиризма гласит: в разуме нет ничего такого...

Индекс гингивита (PMA) (Schour, Massler, 1948) Для оценки тяжести гингивита (а в последующем и ре­гистрации динамики процесса) используют папиллярно-маргинально-альвеолярный индекс (РМА)...

ЛЕКАРСТВЕННЫЕ ФОРМЫ ДЛЯ ИНЪЕКЦИЙ К лекарственным формам для инъекций относятся водные, спиртовые и масляные растворы, суспензии, эмульсии, ново­галеновые препараты, жидкие органопрепараты и жидкие экс­тракты, а также порошки и таблетки для имплантации...

Тема 5. Организационная структура управления гостиницей 1. Виды организационно – управленческих структур. 2. Организационно – управленческая структура современного ТГК...

Методы прогнозирования национальной экономики, их особенности, классификация В настоящее время по оценке специалистов насчитывается свыше 150 различных методов прогнозирования, но на практике, в качестве основных используется около 20 методов...

Studopedia.info - Студопедия - 2014-2024 год . (0.01 сек.) русская версия | украинская версия