Студопедия Главная Случайная страница Задать вопрос

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Волновой пакет. Групповая скорость. Дисперсия волн




Гармоническая (синусоидальная) волна с частотой является идеализацией, т.е. в реальных случаях ее не существует. Это связано с тем, что для нее разброс по частотам равен нулю ( ). Поэтому, в соответствии с формулой (5.43), время излучения такой волны стремится к бесконечности ( ). Это означает, что такая синусоидальная волна занимает все пространство ( ) и никакой полезной информации в себе не несет.

В реальных случаях время излучения волны частоты является конечным, т.е. волна занимает ограниченную область пространства ( ) и имеет не равный нулю разброс по частотам ( ), т.е. представляет собой группу волн.

Вводят понятие волнового пакетаэто группа волн, занимающая в каждый данный момент времени ограниченную область пространства(рис. 6.10).

Рис. 6.10

 

Для описания движения волнового пакета вводят понятие групповой скорости как: 1) скорости движения центра волнового пакета; 2)скорости движения максимального значения его амплитуды (например, точки В на рис. 6.10); 3) скорости переноса энергии волнового пакета.

Для того чтобы записать формулу для групповой скорости волнового пакета, поступим следующим образом:

1. Возьмем линейную среду, для которой выполняется принцип суперпозиции, а именно, возмущение, возникающее в среде при распространении группы волн, можно представить как сумму возмущений, которые возникают в среде при распространении в среде только одной волны этой группы. Этот принцип суперпозиции позволяет представить волновой пакет в виде суммы гармонических волн, частота которых заключена в узком интервале частот ( , ), и модулей волновых чисел в интервале ( , ), где под можно понимать частоту этого волнового пакета.

2. Рассмотрим частный случай волнового пакета, состоящего из двух гармонических волн одинаковой амплитуды с близкими значениями циклических частот ( ) и волновых чисел ( ):

, и , ,

причем

, .

Складывая эти волны, можно получить

.

Первый сомножитель в этом выражении изменяется значительно медленнее со временем и координатой , чем второй, и представляет собой амплитуду волнового пакета

.

Максимальное значение амплитуды волнового пакета (оно соответствует точке В на рис. 6.10) наблюдается при фазе колебаний, равной нулю, что приводит к следующей формуле для групповой скорости

, (6.29)

где учтено, что интервалы частот и модулей волновых векторов являются малыми и поэтому их можно записать в виде и .

Полученная формула для групповой скорости (6.29) будет справедливой и в общем случае.

3. Введем понятие дисперсии волн. Под явлением дисперсии волн понимают зависимость фазовой скорости волны от частоты или длины волны ( ).

Для линейной среды в отсутствии явления дисперсии ( ), все фазовые скорости волн, составляющих волновой пакет, будут одинаковы и равны групповой скорости волнового пакета. Например, на рис. 6.10,а в разные моменты времени положение точки С относительно центра волнового пакета и относительно других составляющих этот пакет волн не изменяется: .

4.Рассмотрим диспергирующие среды – это среды, в которых наблюдаются явления дисперсии. Для этих сред между групповой скоростью волнового пакета и фазовой скоростью составляющих его волн можно получить следующую формулу связи

,

. (6.30)

Из выражения (6.30) видно, что при наличии явления дисперсии ( ) фазовые скорости волн будут отличаться от групповой скорости волнового пакета. При этом различают два случая: 1) нормальная дисперсия ( ) наблюдается для тех сред, для которых фазовая скорость волн будет превышать групповую скорость: . Так, например, на рис. 6.10,б фиксированное значение фазы волны для точки С перемещается внутри волнового пакета к его конечной точке А, т.е. );
2) аномальная дисперсия( ) наблюдается в тех случаях, когда фазовая скорость волн, составляющих волновой пакет, будет меньше групповой скорости: (фиксированное значение фазы волны для точки С перемещается внутри волнового пакета к начальной точке D).

Явление нормальной дисперсии наблюдается для прозрачных сред, а аномальной дисперсии – для сред, поглощающих излучение. Причем, для сред с большим коэффициентом поглощения групповая скорость не вводится Это связано с тем, что в таких средах волновой пакет резко изменяет свою форму, а потеря энергии, приводит к тому, что понятие групповой скорости, как скорости переноса энергии утрачивает свой смысл.

Понятие групповой скорости используется в методах измерения скоростей распространения волн. Именно она фигурирует при измерении дальности в гидро- и радиолокации, в методах зондирования ионосферы, в системах управления космическими объектами и т.д. Отметим, что, согласно теории относительности, групповая скорость всегда меньше скорости света в вакууме ( ).

 






Дата добавления: 2014-11-10; просмотров: 661. Нарушение авторских прав

Studopedia.info - Студопедия - 2014-2017 год . (0.084 сек.) русская версия | украинская версия