Студопедия Главная Случайная страница Задать вопрос

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Электромагнитные волны





6.2.1. Волновые уравнения для электромагнитной волны (ЭМВ).
Уравнение плоской монохроматической ЭМВ.

В § 4.2.8 было отмечено, что из полной системы уравнений Максвелла вытекает существование электромагнитного поля в виде ЭМВ. Покажем это на конкретном примере. Пусть имеется однородная, изотропная пластина из диэлектрика (рис. 6.13,а), заполняющая полупространство ( , рис. 6.13,а). Во всех точках плоскости уОz, на входе пластины создаются гармонические колебания вектора напряженности электрического поля вдоль оси Оу .Считается, что в пластине отсутствуют электрические заряды (q=0) и токи проводимости (jпр=0), а значения относительных диэлектрической и магнитной проницаемостей среды являются постоянными, т.е. среда не является ферромагнитной и сегнетоэлектрической.

Запишем первое уравнение Максвелла в дифференциальной форме (формула (4.67)):

.

Из начальных условий и соображений симметрии для рассматриваемого примера следует, что зависимости вектора от координат у и z не будет, также не будет составляющей вектора вдоль оси Оz:

, , .

Оставим только зависящие от времени решения, так как только они приводят к возникновению ЭМВ в среде, и в итоге получим одно скалярное уравнение

. (6.41)

Аналогично, из второго уравнения Максвелла можно записать

,

 

. (6.42)

Возьмем частную производную по координате х от уравнения (6.41) и частную производную по времени t от уравнения (6.42):

,

 

. (6.43)

Аналогично, беря частные производные по времени t от (6.41) и по координате х от (6.42), получим

,

 

. (6.44)

 

Если сопоставить выражения (6.43) и (6.44) с уравнением (6.6), то можно сказать, что они являются волновыми уравнениями. Решением этих волновых уравнений являются плоские монохроматические волны электрического и магнитного полей

, (6.45)

, (6.46)

распространяющихся вдоль оси Ох с фазовой скоростью

, (6.47)

где с - скорость света в вакууме.

Итак, ЭМВ представляет собой распространяющиеся в пространстве две волны электрического и магнитного полей, взаимосвязанных друг с другом, порождающих одна другую.

В общем случае волновые уравнения для ЭМВ будут соответствовать волновому уравнению (6.7):

, . (6.48)






Дата добавления: 2014-11-10; просмотров: 254. Нарушение авторских прав

Studopedia.info - Студопедия - 2014-2017 год . (0.007 сек.) русская версия | украинская версия