Студопедия Главная Случайная страница Задать вопрос

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Энтропия химической реакции





Мерой неупорядоченности состояния системы служит термодинамическая функция, получившая название энтропии.

Состояние системы можно характеризовать микросостояниями составляющих ее частиц, т.е. их мгновенными координатами и скоростями различных видов движения в различных направлениях. Число микросостояний системы называется термодинамической вероятностью системы W. Поскольку число частиц в системе огромно (1 моль содержит 6,02·1023 частиц), то термодинамическая вероятность системы выражается огромными числами. Поэтому пользуются логарифмом термодинамической вероятности lnW. Величина, равная k·lnW = S, называется энтропией системы. Отнесенная к 1 моль вещества, энтропия имеет единицу измерения Дж/моль·К.

Соотношение S = k·lnW установлено Л. Больцманом (1872 г.), где k – постоянная Больцмана, равная отношению газовой постоянной R к постоянной Авогадро k = R/NA = 1,38·10-2Дж/К.

Энтропия есть мера вероятности пребывания системы в данном состоянии или мера неупорядоченности системы.

Важное значение понятия «энтропия» связано с тем, что на основе этой величины можно прогнозировать направление самопроизвольного протекания процессов. Однако применимость изменения энтропии как критерия направленности процессов ограничивается изолированными системами.

Любой самопроизвольный процесс может протекать в изолированной системе лишь в том случае, когда он характеризуется увеличением энтропии; в равновесии энтропия системы постоянна. Это утверждение, основанное на экспериментальных наблюдениях, является одной из формулировок второго начала термодинамики.

Энтропия вещества в стандартном состоянии называется стандартной энтропией Sº.

В отличие от других термодинамических функций можно определить не только изменение, но и абсолютное значение энтропии. Это вытекает из постулата Планка: при абсолютном нуле энтропия идеального кристалла равна нулю. Этот постулат получил название третьего закона термодинамики.

По мере повышения температуры растет скорость различных видов движения частиц, т.е. число их микросостояний и, соответственно, термодинамическая вероятность и энтропия вещества. При переходе вещества из твердого состояния в жидкое увеличивается неупорядоченность и энтропия. Особенно резко растет энтропия вещества при переходе из жидкого в газообразное состояние, из кристаллического в аморфное.

Энтропия фазовых переходов при р=const ΔS = ΔH/Т.

Энтропия является функцией состояния системы. Изменение энтропии системы в результате протекания реакции (ΔSr) равно сумме энтропий продуктов реакции за вычетом энтропий исходных веществ с учетом стехиометрических коэффициентов. Например, изменение энтропии реакции (ΔSrº):

СН4(г) + Н2О(г) = СО(г) + 3Н2(г);

ΔSrº = Sº(СО) + 3 Sº(Н2) – Sº(Н2О) – Sº(СН4).

Пользуясь таблицей приложения, находим Sº веществ.

ΔSrº = 197,54 + 3·130,58 – 186,19 – 188,7 = 219,39 Дж/К.

Энтропия системы в результате реакции возросла, что говорит о переходе системы от более упорядоченного состояния к менее упорядоченному.

 






Дата добавления: 2014-11-10; просмотров: 197. Нарушение авторских прав

Studopedia.info - Студопедия - 2014-2017 год . (0.014 сек.) русская версия | украинская версия