Студопедия Главная Случайная страница Задать вопрос

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Фотосинтез. Хемосинтез





Фотосинтез — это синтез органических соединений в листьях зеленых растений из воды и углекислого газа атмосферы с использованием солнечной (световой) энергии, адсорбируемой хлорофиллом в хлоропластах. Благодаря фотосинтезу происходит улавливание энергии видимого света и превращение ее в химическую энергию, сохраняемую (запасаемую) в органических веществах, образуемых при фотосинтезе (рис. 70). Значение фотосинтеза гигантское. Отметим лишь, что он поставляет топливо (энергию) и атмосферный кислород, необходимые для существовария всего живого. Следовательно, роль фотосинтеза является планетарной.

 

Планетарность фотосинтеза определяется также тем, что благодаря круговороту кислорода и углерода (в основном) поддерживается современный состав атмосферы, что в свою очередь определяет дальнейшее поддержание жизни на Земле. Можно сказать далее, что энергия, которая запасается в продуктах фотосинтеза, есть по существу основной источник энергии, которым сейчас располагает человечество.

Химию фотосинтеза описывают следующими уравнениями:

Как отмечено выше, фотосинтез происходит в хлоропластах зеленых растений.

Фотосинтез начинается с улавливания и поглощения света пигментом хлорофиллом, содержащимся в хлоропластах клеток зеленых растений. Когда свет падает на молекулу хлорофилла, то один из ее электронов оказывается в возбужденном состоянии. Другими словами, он переходит на более высокий энергетический уровень. Возбужденные электроны передаются затем другими молекулами, в результате чего повышается свободная энергия молекулы-акцептора, а «брешь», образованная в молекуле хлорофилла, заполняется электроном, поступающим из воды. Последняя при этом окисляется, в результате чего выделяется молекулярный кислород. Таким образом, в молекулах хлорофилла световая энергия переводит электроны на более высокий энергетический уровень. Хлорофилл является промежуточным соединением на пути электронов от низкоэнергетического уровня в молекулах воды к высокоэнергетическому уровню в конечном акцепторе электронов.

В переходе электронов на высокий энергетический уровень участвуют две содержащиеся в хлоропластах фотосистемы, образованные хлорофиллом и особыми белками — фотосистема I, активируемая далеким красным светом (-700 нм) и фотосистема II, активируемая красным светом с более высокой энергией (-650 нм), т. е. этот переход происходит в два этапа при использовании света. Реакции, протекающие на этих этапах, получили название световых. Обе фотосистемы связаны между собой системой переноса электронов.

На уровне фотосистемы I молекулы хлорофилла передают свои электроны, богатые энергией, через ферредоксин к никотин-ами-даденин-динуклеотидфосфату (НАДФ), который в результате этого восстанавливается в НАДФЧН ив восстановленной форме уже сам способен самостоятельно поставлять электроны, необходимые для образования глюкозы путем восстановления атмосферной СОу После перехода электронов в НАДФЧН из молекулы хлорофилла в последних остаются своеобразные «бреши».

На уровне фотосистемы II богатые энергией возбужденные электроны хлорофилла передаются системе переноса электронов, а образовавшиеся в молекулах хлорофилла «бреши» после «ушедших» электронов замещаются бедными энергией электронами, которые поступают от воды, окисляющейся с образованием молекулярного кислорода. Пройдя через ряд соединений, составляющих цепь переноса электронов, электроны из фотосистемы II, богатые энергией, в конечном итоге замещают утраченные электроны в хлорофилле из фотосистемы I.

В цепи переноса электронов осуществляется несколько окислительно-восстановительных реакций, в каждой из которых электроны переходят на более низкий энергетический уровень.

Часть энергии, теряемой при переходе через цепь переноса электронов, идет на обеспечение синтеза АТФ из АДФ и неорганического фосфата. Считают, что синтез молекул АТФ связан также с фотосистемой I, в которой имеется циклический поток электронов, заключающийся в том, что электроны, захваченные акцептором, возвращаются хлорофиллу через цитохром В. При этом энергия, высвобождающаяся в реакциях систем переноса электронов, в которых электроны двигаются «вниз», запасается путем синтеза молекул АТФ.

В результате световых реакций фотосинтеза образуются высокоэнергетические АТФ и восстановленный НАДФ, которые снабжают энергией последующие, так называемые темновые реакции, протекающие без света и приводящие, в конце концов, к восстановлению атмосфертной COg до Сахаров. Источником энергии здесь является АТФ, а восстанавливающим агентом — НАДФ-Н, синтезируемые в реакциях фотосинтетического переноса электронов. Процесс восстановления COg начинается с катализируемой ри-булозобисфосфаткарбоксилазой фиксации молекул этого соединения молекулами акцептора и сопровождается вступлением атомов углерода в ряд последовательных реакций, что приводит к образованию на каждые шесть фиксированных молекул COg одной молекулы глюкозы, причем связывание одной молекулы COg обеспечивается затратой трех молекул АТФ и двух молекул НАДФ-Н.

Как отмечено выше, энергия и электроны, необходимые для темновых реакций, поставляются АТФ и восстановленным НАДФ, образованными в световых реакциях.

Таким образом, химическая энергия, генерированная световыми реакциями, стабилизируется в молекулах глюкозы в процессе темновых реакций. В конечном итоге из глюкозы образуется крахмал, который является ее высокомолекулярным полимером, в котором оказываются запасенными по существу как атомы углерода, так и энергия. Полимеризуясь, глюкоза образует также целлюлозу. Подсчитано, что в листьях зеленых растений Земли и в фитопланктоне водоемов ежегодно синтезируется около 150 млрд тонн органических веществ и выделяется в атомсферу около 200 млрд тонн кислорода.

Фотосинтез имеет большую древность. Предполагают, что круговорот углерода, т. е. фотосинтез, существовал уже 3,5 х 109 лет назад.

Хемосинтез — это синтез органических веществ с помощью энергии, генерируемой окислением неорганических соединений, например, аммиака, оксида железа, сероводорода. Хемосинтез был открыт С. Н. Виноградским в 1889-1890 гг. Его осуществляют бактерии разных видов. Рассмотрим некоторые из наиболее известных примеров, начав с нитрифицирующих бактерий, роль которых была показана С. Н. Виноградским.

Нитрифицирующие бактерии являются обитателями почвы. Они получают энергию окислением аммиака, образующегося в почве в результате разложения белков (остатков животных и растений). Реакция окисления аммиака может быть описана следующим уравнением:

В этой реакции выделяется энергия в количестве бй2 кДж. Образующаяся в ходе этой реакции азотистая кислота окисляется нитрифицирующими бактериями другого вида до азотной кислоты с выделением энергии в количестве 101 кДж. Эта реакция описывается следующим уравнением:

Энергия, освобождаемая в этих реакциях, используется для синтеза органических веществ.

Серобактерии получают энергию, окисляя сероводород. Этот процесс можно описать следующим уравнением:

энергия

Образующаяся в результате этой реакции свободная сера накапливается в цитоплазме серобактерий. Если недостает далее сероводорода, то происходит окисление свободной серы в бактериальной цитоплазме с дальнейшим освобождением энергии:

энергия

Эта энергия используется для синтеза органических веществ из углекислого газа.

Хемосинтезирующие бактерии окисляют также соединения железа и марганца. Считают, что образование залежей железных и марганцевых руд является результатом деятельности микроорганизмов в прошлые геологические эпохи (В. И. Вернадский).






Дата добавления: 2014-11-12; просмотров: 258. Нарушение авторских прав

Studopedia.info - Студопедия - 2014-2017 год . (0.009 сек.) русская версия | украинская версия