Студопедия — Теоремы о спектрах
Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Теоремы о спектрах






I. Свойство линейности.

Если имеется некоторая совокупность сигналов причём , …, то взвешенная сумма сигналов преобразуется по Фурье следующим образом:

(2.11)

Здесь - произвольные числовые коэффициенты.

 

II. Теорема о сдвигах.

Предположим, что для сигнала известно соответствие . Рассмотрим такой же сигнал, но возникающий на секунд позднее. Принимая точку за новое начало отсчёта времени, обозначим этот смещённый сигнал как . Введём замену переменной: . Тогда ,

Модуль комплексного числа при любых равен 1, поэтому амплитуды элементарных гармонических составляющих, из которых складывается сигнал, не зависят от его положения на оси времени. Информация об этой характеристике сигнала заключена в частотой зависимости аргумента от его спектральной плотности (фазовом спектре).

 

III. Теорема масштабов.

 

Предположим, что исходный сигнал подвергнут изменению масштаба времени. Это означает, что роль времени играет новая независимая переменная ( - некоторое вещественное число.) Если > 1, то происходит “ сжатие” исходного сигнала; если же 0< < 1, то сигнал “растягивается” во времени. Если , то:

Произведём замену переменной , тогда , откуда следует:

(2.13)

При сжатии сигнала в раз на временной оси во столько же раз расширяется его спектр на оси частот. Модуль спектральной плотности при этом уменьшается в раз.

Очевидно, что при растягивании сигнала во времени (т.е. при < 1) имеет место сужение спектра и увеличение модуля спектральной плотности.

 

IV. Теорема о спектре производной и неопределённого интеграла.

 

Пусть сигнал и его спектральная плоскость заданы. Будем изучать новый сигнал и поставим цель найти его спектральную плотность .

По определению:

(2.14)

Преобразование Фурье – линейная операция, значит, равенство (2.14) справедливо и по отношению к спектральным плотностям. Получаем по теореме о сдвигах:

(2.15)

Представляя экспоненциальную функцию рядом Тейлора: подставляя этот ряд в (2.15) и ограничиваясь первыми двумя числами, находим

(2.16)

Итак, дифференцирование сигнала по времени эквивалентно простой алгебраической операции умножения спектральной плотности на множитель . Поэтому говорят, что мнимое число является оператором дифференцирования, действующим в частотной области.

Вторая часть теоремы. Рассмотренная функция является неопределённым интегралом по отношению к функции . Интеграл это есть , значит - его спектральная плотность, а из формулы (2.16) равна:

(2.17)

Таким образом, множитель служит оператором интегрирования в частотной области.

 

V. Теорема о свёртке.

 

Как известно, при суммировании сигналов их спектры складываются. Однако спектр произведения сигналов не равен произведению спектров, а выражается некоторым специальным интегральным соотношением между спектрами сомножителей.

Пусть и - два сигнала, для которых известны соответствия , .Образуем произведение этих сигналов: и вычислим его спектральную плотность. По общему правилу:

(2.18)

Применив обратное преобразование Фурье, выразим сигнал через его спектральную плотность и подставим результат в (2.18):

Изменив порядок интегрирования, будем иметь:

 

откуда:

(2.19)

Интеграл, стоящий в правой части называют свёрткой функций V и U. Символически операция свёртки обозначается как *

Таким образом, спектральная плотность произведения двух сигналов с точностью до постоянного числового множителя равна свёртке спектральных плотностей сомножителей:

(2.20)

Операция свёртки коммутативна, т.е. допускает изменения порядка следования преобразуемых функций:

Теорема о свёртке может быть обращена: если спектральная плотность некоторого сигнала представляется в виде произведения , причём

и , то сигнал является свёрткой сигналов и , но уже не в частной, а во временной области:

(2.21)

 

VI. Теорема Планшереля

 

Пусть два сигнала и , в общем случае комплексные, определены своими обратными преобразованиями Фурье:

;

.

Найдём скалярное произведение этих сигналов, выразив один из них, например , через его спектральную плотность:

 

Здесь внутренний интеграл представляет собой спектральную плотность сигнала поэтому:

(2.22)

Скалярное произведение двух сигналов с точностью до коэффициента пропорционально скалярному произведению их спектральных плотностей.

 







Дата добавления: 2014-11-12; просмотров: 1975. Нарушение авторских прав; Мы поможем в написании вашей работы!



Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...

Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...

Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...

Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

Приготовление дезинфицирующего рабочего раствора хлорамина Задача: рассчитать необходимое количество порошка хлорамина для приготовления 5-ти литров 3% раствора...

Дезинфекция предметов ухода, инструментов однократного и многократного использования   Дезинфекция изделий медицинского назначения проводится с целью уничтожения патогенных и условно-патогенных микроорганизмов - вирусов (в т...

Машины и механизмы для нарезки овощей В зависимости от назначения овощерезательные машины подразделяются на две группы: машины для нарезки сырых и вареных овощей...

Алгоритм выполнения манипуляции Приемы наружного акушерского исследования. Приемы Леопольда – Левицкого. Цель...

ИГРЫ НА ТАКТИЛЬНОЕ ВЗАИМОДЕЙСТВИЕ Методические рекомендации по проведению игр на тактильное взаимодействие...

Реформы П.А.Столыпина Сегодня уже никто не сомневается в том, что экономическая политика П...

Studopedia.info - Студопедия - 2014-2024 год . (0.009 сек.) русская версия | украинская версия