Студопедия — Спектральные представления сигналов с использованием негармонических функций
Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Спектральные представления сигналов с использованием негармонических функций






Для представления непрерывных сигналов используются различные системы ортогональных функций.

I. Для представления непрерывных сигналов используются преимущественно ортогональные функции и полиномы Лежандра, Чебышева, Лагерра и Эрмита.

 

1) Полиномы Лежандра (1-го рода) определяются формулой:

,

Ряд выглядит следующим образом:

,

Спектральные коэффициенты определяются формулой:

,

2) Полиномы Чебышева (1-го рода) определяются формулой:

Ряд:

- коэффициенты ряда

 

График полинома Чебышева 4-го порядка:

Полиномы Чебышева обеспечивают наименьшую максимальную ошибку аппроксимации на интервале . Эффективны для аппроксимации АЧХ различных фильтров.

 

3) Полиномы Лагерра определяются формулой

Так как полиномы Лагерра образуют систему расходящихся при функций, то удобнее пользоваться функциями Лагерра

Разложение в ряд по функциям Лагерра

коэффициенты должны определяться по формуле:

Функции Лагерра получили широкое распространение в измерительной технике и в многоканальных системах связи, что объясняется простотой их генерирования.

 

4) Полиномы Эрмита определяются формулой:

Разложение в ряд по нормированным функциям Эрмита:

- коэффициенты ряда (спектральные составляющие)

Полиномы Эрмита отличаются от полиномов Лагерра тем, что полиномы Лагерра определены на интервале, представляющем собой полуось , а полиномы Эрмита – на интервале, представляющем собой всю ось .

 

II. Для представления дискретных сигналов используются в основном функции Уолша.

 

Чаще всего используются функции Уолша, которые на отрезке своего существования принимают лишь значения .

Введём безразмерное время , тогда k-ая функция Уолша обозначается символом .

Разложение сигнала в ряд по функциям Уолша на заданном отрезке времени имеет вид:

- коэффициенты ряда.

Графики функций Уолша

 

 

 

 

 

 

 

 

III. Вейвлет – анализ.

 

Если сигнал не имеет чёткого периодического характера, то алгоритмы преобразования Фурье становятся менее эффективными.

Эта проблема в последние годы решается с помощью нового подхода в теории и технике сигналов – вейвлет–анализа.

Wavelet – в переводе с английского “небольшая волна” или “небольшое колебание”.

 

С помощью вейвлет–анализа можно представлять как дискретные, так и непрерывные сигналы.

а) В основе дискретного вейвлет–анализа лежит использование исходного (или порождающего) вейвлета Хаара. Эта функция существует на отрезке [0, 1] и принимает одно из двух возможных значений.

- безразмерное время

Ортонормированная базисная система вейвлетов Хаара строится за счёт операций сдвига во времени и изменения временного масштаба.

Тогда сигнал можно разложить в ряд по этим функциям, следующим образом:

На основании предыдущего, коэффициенты являются скалярными произведениями исходного сигнала и соответствующей базисной функции:

Данный ряд отличается от изучавшегося ранее тем, что суммирование производится не по одному, а по двум индексам.

Вейвлет – спектр сигнала, принимающего вещественные значения, можно образно представить себе как некоторый “лес” из вертикальных отрезков, размещенных над j k – плоскостью в точках с целочисленными координатами. При этом координата j указывает на скорость изменения сигнала, а координата k – на положение вдоль оси времени.

б) Для анализа непрерывных сигналов пользуются непрерывными вейвлетами.

Примером может служить вейвлет типа “сомбреро”:

Вейвлет–преобразованием является функция двух переменных:

По своему смыслу вейвлет–преобразование соответствует преобразованию Фурье, только вместо функции используется вейвлет .

Вейвлет–преобразование является функцией двух аргументов, первый из которых аналогичен периоду колебания (т.е. обратной частоте), а второй – смещению сигнала вдоль оси времени.

Обратное вейвлет–преобразование:

Вейвлет–анализ особенно эффективен при решении задач сжатия и распознавания сигналов. Алгоритмы вейвлет–анализа представлены в составе прикладного пакета Mathlab.


Раздел 3. Сигналы с ограниченным спектром

 

Для восстановления сигнала по его спектру необходимо учитывать все составляющие с частотами, лежащими в интервале от нуля до бесконечности. Однако с физической точки зрения такая процедура принципиально неосуществима.

К тому же вклад спектральных составляющих при пренебрежимо мал в силу ограниченности энергии сигналов. Кроме того, любое реальное устройство, предназначенное для передачи и обработки сигналов, имеет конечную ширину полосы пропускания.

Поэтому на практике обычно используется математическая модель сигнала с ограниченным спектром. Сигналы, спектральная плотность которых отлична от нуля лишь в пределах некоторой полосы частот конечной протяжённости, называются сигналами с ограниченным спектром.

 







Дата добавления: 2014-11-12; просмотров: 1665. Нарушение авторских прав; Мы поможем в написании вашей работы!



Шрифт зодчего Шрифт зодчего состоит из прописных (заглавных), строчных букв и цифр...

Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...

Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...

Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...

Уравнение волны. Уравнение плоской гармонической волны. Волновое уравнение. Уравнение сферической волны Уравнением упругой волны называют функцию , которая определяет смещение любой частицы среды с координатами относительно своего положения равновесия в произвольный момент времени t...

Медицинская документация родильного дома Учетные формы родильного дома № 111/у Индивидуальная карта беременной и родильницы № 113/у Обменная карта родильного дома...

Основные разделы работы участкового врача-педиатра Ведущей фигурой в организации внебольничной помощи детям является участковый врач-педиатр детской городской поликлиники...

Классификация и основные элементы конструкций теплового оборудования Многообразие способов тепловой обработки продуктов предопределяет широкую номенклатуру тепловых аппаратов...

Именные части речи, их общие и отличительные признаки Именные части речи в русском языке — это имя существительное, имя прилагательное, имя числительное, местоимение...

Интуитивное мышление Мышление — это пси­хический процесс, обеспечивающий познание сущности предме­тов и явлений и самого субъекта...

Studopedia.info - Студопедия - 2014-2024 год . (0.012 сек.) русская версия | украинская версия