Студопедия Главная Случайная страница Задать вопрос

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Функции k - значной логики





Введем обозначение: Eк={0, 1, 2, ..., k–1}.

Функция k-значной логики, зависящая от n переменных, – это закон, отображающий . Множество функций k-значной логики обозначается как Рk. Функция из Рk полностью определена, если задана ее таблица истинности, т.е. заданы значения на всех наборах. Наборы можно рассматривать как записи в k-ичной системе счисления чисел от 0 до k–1, всего наборов kn. Функций из Рk, зависящих от n переменных, будет kn. |P3(n)|, например, будет 3, если n = 2, то |P3(2)| = 39 = 19683 (k=3, n=2).

x1 x2 . . . xn-1 xn f
0 0 . . . 0 0 0 0 . . . 0 1 . . . . . . . . . . . . . . . . . . . 0 0 . . . 0 k–1 0 0 . . . 1 0 . . . . . . . . . . . . . . . . . . . k–1 k–1 . . . k–1 k–1 . . . . . . .

В k - значной логике также есть функции, которые называются элементарными. Приведем некоторые из них, примеры будем приводить для k = 3 и n = 2.

1. Циклический сдвиг или отрицание Поста: = x+1(mod k).

2. Зеркальное отображение или отрицание Лукосевича: Nx = k–1–x.

Эти две функции являются обобщением отрицания.

3. Ji(x)={k-1, x = i, I = 0, 1, 2, ..., k–1}.

 

x1 x2 Nx J0(x) J1(x) J2(x)

4. min(x1,x2) – обобщение конъюнкции;

5. x1×x2(mod k) – второе обобщение конъюнкции;

6. max(x1,x2) – обобщение дизъюнкции;

7. x1+x2(mod k) – сумма по mod k.

x1 x2 min(x1,x2) x1x2(mod 3) max(x1x2) x1+x2(mod 3)

Принято min(x1,x2) обозначать x1&x2, max(x1,x2) обозначать x1Úx2.

Как и в двузначной логике, можно ввести понятие формулы над множеством и ставить вопрос о полной в Рk системе функций.






Дата добавления: 2014-11-12; просмотров: 209. Нарушение авторских прав

Studopedia.info - Студопедия - 2014-2017 год . (0.007 сек.) русская версия | украинская версия