Студопедия — ОСОБЕННОСТИ МЕТАБОЛИЗМА НЕРВНОЙ ТКАНИ
Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

ОСОБЕННОСТИ МЕТАБОЛИЗМА НЕРВНОЙ ТКАНИ






Центральной функциональной клеткой нервной ткани является нейрон, который связан с помощью дендритов и аксонов с такими же клетками и клетками других типов, например, с секреторными и мышечными клетками. Клетки разделены синаптическими щелями. Связь между клетками осуществляется путём передачи сигнала. Сигнал проходит от тела нейрона по аксону до синапса. В синаптическую щель выделяется вещество – медиатор. Медиатор вступает в связь с рецепторами на другой стороне синаптической щели. Это обеспечивает восприятие сигнала и генерацию нового сигнала в клетке – акцепторе.

К функциям нервной ткани относятся: генерация электрического сигнала (нервного импульса); проведение нервного импульса; запоминание и хранение информации; формирование эмоций и поведения; мышление.

Специфику нервной ткани определяет гематоэнцефалический барьер (ГЭБ). Гематоэнцефалический барьер имеет избирательную проницаемость для различных метаболитов, а также способствует накоплению некоторых веществ в нервной ткани. Таким образом, нервная ткань отличается по химическому составу от других тканей.

Большая часть липидов нервной ткани находится в составе плазматических и субклеточных мембран нейронов и в миелиновых оболочках. В нервной ткани по сравнению с другими тканями организма содержание липидов очень высокое. В липидный состав нервной ткани входят: фосфолипиды (ФЛ), гликолипиды (ГЛ) и холестерин (ХС) и нет нейтральных жиров. Эфиры холестерина можно встретить только в участках активной миелинизации. Сам холестерин синтезируется интенсивно только в развивающемся мозге. В мозге взрослого человека низка активность ГМГ-КоА-редуктазы – ключевого фермента синтеза холестерина. Содержание свободных жирных кислот в мозге очень низкое.

Функции липидовнервной ткани:

1. Структурная: липиды входят в состав клеточных мембран нейронов.

2. Функция диэлектриков.

3. Защитная. Ганглиозиды являются активными антиоксидантами – ингибиторами перекисного окисления липидов. При повреждении ткани мозга ганглиозиды способствуют её заживлению.

4. Регуляторная. Фосфатидилинозиты являются предшественниками биологически активных веществ.

Липиды постоянно обновляются. Некоторые липиды: холестерин, цереброзиды, фосфатидилэтаноламины, сфингомиелины, обмениваются медленно, в течение месяцев и даже лет. Исключение составляет фосфатидилхолин и, особенно, фосфатидилинозиты. Они обмениваются очень быстро (сутки, недели). Синтез цереброзидов и ганглиозиов протекает с большой скоростью в развивающемся мозге в период миелинизации. У взрослых почти все цереброзиды (до 90%) находятся в миелиновых оболочках, а ганглиозиды – в нейронах.

Нервные клетки не делятся, следовательно, в них не происходит синтез ДНК. Однако содержание РНК в них самое высокое по сравнению с клетками остальных тканей организма. Скорость синтеза РНК тоже очень велика. В клетках нервной ткани не могут синтезироваться пиримидины, т.к. в нервной ткани отсутствует фермент карбамоилфосфатсинтетаза. Пиримидины обязательно должны поступать из крови – гематоэнцефалический барьер для них проницаем. Гематоэнцефалический барьер легко проницаем и для пуриновых мононуклеотидов, но, в отличие от пиримидиновых, они могут синтезироваться в нервной ткани. В нервной ткани нуклеиновые кислоты обеспечивают хранение и передачу генетической информации и её реализацию при синтезе клеточных белков.

Например, сильные раздражители – громкие звуки, сильные зрительные стимулы и эмоции приводят к повышению скорости синтеза и РНК, и белка в определённых участках мозга. Это указывает на то, что изменения в нервной системе, отражающие индивидуальный опыт организма, кодируются в виде синтезированных макромолекул. Информация, благодаря которой нейроны устанавливают только определённые связи с определёнными нейронами, кодируется в структуре полисахаридных веточек мембранных гликопротеинов. Образование таких связей, не заложенных в период эмбрионального развития, является результатом опыта индивидуального организма и составляет материальную основу для хранения информации, определяющей особенности поведения данного организма.

В нервной ткани, составляющей только 2% от массы тела человека, потребляется 20% кислорода, поступающего в организм, при этом энергетические возможности нервной ткани ограничены.

Метаболизм углеводов. Основной путь получения энергии – только аэробный распад глюкозы. Глюкоза является почти единственным энергетическим субстратом, поступающим в нервную ткань, который может быть использован её клетками для образования АТФ. Проникновение глюкозы в ткань мозга не зависит от действия инсулина, который не проникает через гематоэнцефалический барьер. Влияние инсулина проявляется лишь в периферических нервах. Содержание гликогена в нервной ткани ничтожно и не может обеспечить мозг энергий даже на короткое время. С другой стороны, окисления неуглеводных субстратов с целью получения энергии не происходит. Поэтому при гипогликемии и/или даже кратковременной гипоксии в нервной ткани образуется мало АТФ. Следствием этого является быстрое наступление коматозного состояния и необратимые изменения в ткани мозга.

Высокая скорость потребления глюкозы нервными клетками обеспечивается, в первую очередь, работой высокоактивной гексокиназы мозга. В отличие от других тканей, здесь гексокиназа не является ключевым ферментом всех путей метаболизма глюкозы. Ключевыми ферментами являются фосфофруктокиназа и изоцитратдегидрогеназа.

Образование НАДФН2, который используется в нервной ткани в основном для синтеза жирных кислот и стероидов, обеспечивается сравнительно высокой скоростью протекания пентозофосфатного пути распада глюкозы.

Функционирование нервной ткани сопровождается резкими перепадами в употреблении энергии. Резкое повышение энергозатрат происходит при очень быстром переходе от сна к бодрствованию. Во время сна накапливается креатинфосфат. Переход к бодрствованию приводит к резкому уменьшению концентрации АТФ. Происходит образование АТФ из креатинфосфата.

Метаболизм аминокислот и белков. Ткань мозга интенсивно обменивается аминокислотами с кровью. Для этого существуют специальные транспортные системы - две для незаряженных аминокислот и ещё несколько - для аминокислот, заряженных положительно и отрицательно. До 75% от общего количества аминокислот нервной ткани составляют аспартат и глутамат, а также продукты их превращения или вещества, синтезированные с их участием (глутамин, ацетильные производные, глутатион, ГАМК и др.). Их концентрации, и, в первую очередь, концентрация глутамата в нервной ткани очень высоки. Например, концентрация глутаминовой кислоты может достигать 10 ммоль/л.

Глутаминовая кислота связана большим числом реакций с промежуточными метаболитами ЦТК (энергетическая функция). Глутамат (вместе с аспартатом) принимает участие в реакциях дезаминирования других аминокислот и временном обезвреживании аммиака. Из глутамата образуется нейромедиатор ГАМК. Он принимает участие в синтезе глутатиона – одного из компонентов антиоксидантной системы организма.

Образуется глутамат из своего кетоаналога - α -кетоглутаровой кислоты в ходе реакции трансаминирования. Большое расходование α -кетоглутаровой кислоты восполняется за счёт превращения аспарагиновой кислоты в метаболит ЦТК - оксалоацетат.

Образующаяся из глутамата ГАМК в результате нескольких реакций может быть превращена снова в оксалоацетат. Так образуется ГАМК-шунт, имеющийся в тканях головного и спинного мозга. Поэтому в этих тканях содержание ГАМК, как промежуточного метаболита циклического процесса, значительно выше, чем в остальных. На образование ГАМК здесь используется до 20% от общего количества глутамата.

Остальные пути метаболизма аминокислот сходны с имеющимися в других тканях. Ткань мозга способна синтезировать заменимые аминокислоты, как и другие ткани. До сих пор непонятным остается наличие в мозге почти полного набора ферментов орнитинового цикла, не содержащего карбамоилфосфатсинтазы, из-за чего мочевина здесь не образуется.

 







Дата добавления: 2014-11-12; просмотров: 1596. Нарушение авторских прав; Мы поможем в написании вашей работы!



Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...

Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...

Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...

Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...

Решение Постоянные издержки (FC) не зависят от изменения объёма производства, существуют постоянно...

ТРАНСПОРТНАЯ ИММОБИЛИЗАЦИЯ   Под транспортной иммобилизацией понимают мероприятия, направленные на обеспечение покоя в поврежденном участке тела и близлежащих к нему суставах на период перевозки пострадавшего в лечебное учреждение...

Кишечный шов (Ламбера, Альберта, Шмидена, Матешука) Кишечный шов– это способ соединения кишечной стенки. В основе кишечного шва лежит принцип футлярного строения кишечной стенки...

Функциональные обязанности медсестры отделения реанимации · Медсестра отделения реанимации обязана осуществлять лечебно-профилактический и гигиенический уход за пациентами...

Определение трудоемкости работ и затрат машинного времени На основании ведомости объемов работ по объекту и норм времени ГЭСН составляется ведомость подсчёта трудоёмкости, затрат машинного времени, потребности в конструкциях, изделиях и материалах (табл...

Гидравлический расчёт трубопроводов Пример 3.4. Вентиляционная труба d=0,1м (100 мм) имеет длину l=100 м. Определить давление, которое должен развивать вентилятор, если расход воздуха, подаваемый по трубе, . Давление на выходе . Местных сопротивлений по пути не имеется. Температура...

Studopedia.info - Студопедия - 2014-2024 год . (0.011 сек.) русская версия | украинская версия