Студопедия — Задания. Вязкость пластичной жидкости находится по следующей формуле:
Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Задания. Вязкость пластичной жидкости находится по следующей формуле:






Варианты 1.1 – 1.3

Вязкость пластичной жидкости находится по следующей формуле:

,

где t0 – напряжение внутреннего трения, при котором пластичная жидкость начинает движение, Н/м2; d – диаметр проходного сечения, м; w- средняя скорость жидкости, м/c; h – коэффициент пропорциональности, характеризующий пластичные свойства жидкости.

Определить t0 и h, если известно, что d= 0.2 м и в ходе исследования получены следующие экспериментальные данные:

Номер варианта Экспериментальные данные Метод решения системы линейных уравнений
i                
1.1 w 0.2 0.25 0.4 0.6 0.7 0.75 0.9 - Крамера
m               -
1.2 w 0.3 0.4 0.7 0.9 1.2 1.4 1.5 1.7 Гаусса
m                
1.3 w 0.25 0.5 0.6   1.5   2.75   Обращения матриц
m                

 

Варианты 1.4 – 1.6

Эффективную скорость газа, соответствующую началу подвисания жидкости при прохождении газа через нее, можно найти по числу Рейнольдса, определяемого по формуле:

,

где Ar критерий Архимеда, соответствующий эквивалентному диаметру насадки и плотности газа; Wg и Wf – скорости газа и жидкости, кг/ч; a и b – константы.

Определить a и b, если известно, что Wg =12300 кг/ч, Ar=46 и в ходе исследования получены следующие экспериментальные данные:

Номер варианта Экспериментальные данные Метод решения системы линейных уравнений
i                
1.4 Wf                 Обращения матриц
Re                
1.5 Wf               - Гаусса
Re               -
1.6 Wf             - - Крамера
Re             - -

 

Варианты 1.7 – 1.9

Постоянная составляющая помехи в электрической сети описывается следующей математической моделью:

где w1 и w2 – угловые скорости, рад/с; t – время, с; U – напряжение, В; a0, a1, a2 – константы.

Определить a0, a1, a2, если известно, что w1=5 рад/с, w2=10 рад/с и в ходе исследования получены следующие экспериментальные данные:

Номер варианта Экспериментальные данные Метод решения системы линейных уравнений
i                
1.7 t 0.1 0.5 0.6 0.8 1.1 1.4 1.6 1.8 Обращения матриц
U     -16 -5     -2 -20
1.8 t 0.2 0.3 0.5 0.8 0.9   1.2 1.4 Гаусса
U                
1.9 t 0.1 0.2 0.4 0.8 0.9   1.2 1.5 Крамера
U 3.2 3.3 2.7 3.1 3.05 2.9   3.2

 

 

Варианты 1.10 -1.13

Изменение температуры в зависимости от времени в трубчатом реакторе можно описать следующей математической моделью:

,

где t – время, с; Т - температура реакционной массы, К; a0, a1, a2 – константы.

Определитьa0, a1, a2, если известно, что в ходе исследования получены следующие экспериментальные данные:

Номер варианта Экспериментальные данные Метод решения системы линейных уравнений
i                
1.10 t               - Крамера
T                
1.11 t                 Обращения матриц
T     300.5 300.5        
1.12 t                 Гаусса
T                
1.13 t             - - Обращения матриц
T             - -

 

Варианты 2.1 -2.3

Константа скорости химической реакции подчиняется закону Аррениуса:

,

где k0 – постоянная скорости химической реакции; Т температура реакционной массы, К; E – энергия активации, кДж/моль; R= 8.32 универсальная газовая постоянная, кДж/(К× моль).

Определить k0 иE, если известно, что в ходе исследования получены следующие экспериментальные данные:

 

Номер варианта Экспериментальные данные Метод решения системы линейных уравнений
i                
2.1 T 277.5           297.5 - Обращения матриц
K     1239.5   1239.8 1240.5   -
2.2 T           292.5     Гаусса
K                
2.3 T               - Крамера
K               -

 

Варианты 2.4 -2.9

Зависимость максимальной ньютоновской вязкости полимера в растворе без учета средневязкостного молекулярного веса и коэффициента полидисперсности полимера выглядит следующим образом:

,

где Т температура реакционной массы, К; R= 8.32 универсальная газовая постоянная, кДж/(К× моль); Cp – концентрация полимера, безразм.; a1, a2, a3, – константы; А – поправочный коэффициент ед. измерения, Па× с.

а) Определить значения констант a1, a2, a3при Т= 300 К, А = 0.51 Па× с, если известны следующие экспериментальные данные

 

Номер варианта Экспериментальные данные Метод решения системы линейных уравнений
i                
2.4 Cp 0.05 0.2 0.4 0.6 0.8 0.9 0.95 - Гаусса
h0 0.1 0.3 0.6 0.9 1.2 1.5 1.5 -
2.5 Cp 0.1 0.2 0.3 0.4 0.7 0.8 0.9 - Крамера
h0   3.5 5.1   8.5   9.4 -
2.6 Cp 0.05 0.15 0.3 0.4 0.5 0.6 0.7 0.9 Обращения матриц
h0                

 

б) Определить значения констант Аиa3при Cp = 0.5, a1=1.9, a2=2.7, если известны следующие экспериментальные данные

Номер варианта Экспериментальные данные Метод решения системы линейных уравнений
i                
2.7 Т                 Крамера
h0       3.5     1.8  
2.8 Т               - Обращения матриц
h0               -
2.9 Т               - Гаусса
h0             13.5 -

 

Варианты 2.10 – 2.13

Постоянная составляющая помехи в электрической сети описывается следующей математической моделью:

,

где w1 – угловая скорость, рад/с; t – время, с; U – напряжение, В; a0, a1, a2 – константы.

Определить a0, a1, a2, если известно, что w1=15 рад/с и в ходе исследования получены следующие экспериментальные данные:

Номер варианта Экспериментальные данные Метод решения системы линейных уравнений
  i                
2.10 t 0.05 0.15 0.2 0.3 0.7 0.8 0.85 0.9 Крамера
U       -5        
2.11 t 0.1 0.15 0.2 0.3 0.4 0.5 0.55 - Гаусса
U               -
2.12 t 0.05 0.1 0.25 0.4 0.6 0.65 0.8 - Крамера
U -7 -3           -
2.13 t   0.2 0.3 0.4 0.5 0.6 0.7   Обращения матриц
U                

 







Дата добавления: 2014-11-12; просмотров: 644. Нарушение авторских прав; Мы поможем в написании вашей работы!



Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...

Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...

Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...

Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

Задержки и неисправности пистолета Макарова 1.Что может произойти при стрельбе из пистолета, если загрязнятся пазы на рамке...

Вопрос. Отличие деятельности человека от поведения животных главные отличия деятельности человека от активности животных сводятся к следующему: 1...

Расчет концентрации титрованных растворов с помощью поправочного коэффициента При выполнении серийных анализов ГОСТ или ведомственная инструкция обычно предусматривают применение раствора заданной концентрации или заданного титра...

Субъективные признаки контрабанды огнестрельного оружия или его основных частей   Переходя к рассмотрению субъективной стороны контрабанды, остановимся на теоретическом понятии субъективной стороны состава преступления...

ЛЕЧЕБНО-ПРОФИЛАКТИЧЕСКОЙ ПОМОЩИ НАСЕЛЕНИЮ В УСЛОВИЯХ ОМС 001. Основными путями развития поликлинической помощи взрослому населению в новых экономических условиях являются все...

МЕТОДИКА ИЗУЧЕНИЯ МОРФЕМНОГО СОСТАВА СЛОВА В НАЧАЛЬНЫХ КЛАССАХ В практике речевого общения широко известен следующий факт: как взрослые...

Studopedia.info - Студопедия - 2014-2024 год . (0.013 сек.) русская версия | украинская версия