Студопедия Главная Случайная страница Задать вопрос

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Явная разностная схема




Рассмотрим исходное уравнение (165) в n-й момент времени в k-ой точке пространства. Тогда правая часть уравнения (165) – первая частная производная по времени будет представлена так:

. (171)

Поскольку производная по времени, поэтому изменяется индекс n.

Вторая частная производная в сеточной области определяется как отношение разности 1-х производных по длине шага сетки.

. (172)

С помощью этих равенств производная с 1-м порядком точности относительно шага Dt и частная производная со 2-м порядком точности относительно шага Dx аппроксимируется в конечно-разностные отношения.

Производим замену в уравнении (165).

. (173)

. (174)

Из (174) видно, что по значению функции c(x, t) в точках n-го временного слоя можно вычислить значение функции c(x, t) в точках n+1 временного слоя, т. е. мы имеем явную схему (рис. 104).

 
 

Рис. 104. Явная схема

Значение c(x, t) при t=0 определяется из начальных условий: для (нижняя граница сетки).

Значение функции с(x, t) в крайних узлах при х=0 и х=L определяется из краевых условий:

1. для (левая граница сетки).

2. Для расчета концентраций в сеточной области также необходимо знать CKn – концентрацию на границе (L) (концентрацию на парвом конце сетки), которая вычисляется из граничного условия:

,

откуда следует, что

.

Последовательно вычисляя С(xк,t1) для , затем C(xк,t2) для и т. д. до C(xк,tN) получим профиль концентраций в произвольный момент времени в произвольной точке пространства.

Таким образом, уравнение (174) представляет собой систему уравнений, которая рассчитывается раз:

(175)






Дата добавления: 2014-11-12; просмотров: 157. Нарушение авторских прав

Studopedia.info - Студопедия - 2014-2017 год . (0.014 сек.) русская версия | украинская версия