Студопедия — Структурная группа звеньев 2-3. Рисуем группу (рис. 20) с приложенными внешними силами, а влияние отброшенных связей (звеньев) в точках В и D заменяем реакциями и
Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Структурная группа звеньев 2-3. Рисуем группу (рис. 20) с приложенными внешними силами, а влияние отброшенных связей (звеньев) в точках В и D заменяем реакциями и






 

Рисуем группу (рис. 20) с приложенными внешними силами, а влияние отброшенных связей (звеньев) в точках В и D заменяем реакциями и , каждая из которых в виде двух составляющих: нормальной вдоль звена и тангенциальной перпендикулярно звену. Реакция в точке Е , учитывающая влияние отброшенного звена 4, считается уже внешней силой, найденной при силовом анализе предыдущей структурной группы.

Запишем первое уравнение равновесия структурной группы: векторная сумма всех сил должна быть равна нулю:

+ + + + + + + + = 0.

В этом уравнении четыре величины неизвестных реакций. Две из них – тангенциальные составляющие – находим из второго условия равновесия: сума моментов всех сил относительно внутренней кинематической пары отдельно для каждого из звеньев должна быть равна нулю. Затем находим нормальные составляющие реакций из плана сил, построенного для всей структурной группы.

Итак, для второго звена: Σ Мс = 0; ВС + hG 2 hPu 2 =0,

откуда = .

 

Рис. 20. Расчетная схема структурной группы звеньев 2-3

 

Для третьего звена: Σ Мс = 0

R 03τ CDR 43 h 43 + G 3 hG 3Pu 3 hPu 3 = 0,

 

откуда R 03τ = .

В этих уравнениях плечи сил можно брать с чертежа без учета масштаба длин, так как он все равно бы сократился.

Будем считать, что величины реакций R 12τ и R 03τ получили со знаком плюс. Значит, угадали правильное направление этих реакций. Если бы получили знак минус, то при построении плана сил направление соответствующей реакции нужно было бы рисовать противоположное.

У нас остались две неизвестные величины нормальных составляющих реакций во внешних кинематических парах. Их находим из плана сил. Строим его (рис. 21), откладываем последовательно все известные силы, приложенные вначале к одному звену, например 2-му, а затем все силы, приложенные к другому, например 3-му, т.е. последовательно откладываем вектора , , , , , . После этого через начало вектора проводим линию действия реакции параллельно звену ВС, а через конец вектора проводим линию действия реакции параллельно звену СD.

Точка пересечения этих линий ограничивает величину соответствующих реакций.

При построении плана сил известные вектора можно откладывать в любом порядке. Но, как уже было отмечено, лучше, чтобы вначале были отложены все силы, приложенные к одному звену, а затем все силы, приложенные к другому. Кроме того, желательно начинать построение уже с найденной тангенциальной составляющей одного звена группы, а заканчивать тангенциальной составляющей другого звена группы. В этом случае на этом же плане сил можно показать, во-первых, полную реакцию в соответствующей кинематической паре и, во-вторых, полную реакцию во внутренней кинематической паре. Так, на рис. 21 пунктиром показана реакция как сумма векторов и и реакция как векторная сумма сил, приложенных ко второму звену. Последнее следует из условия равновесия второго звена:

+ + + = 0.

– это реакция во внутренней кинематической паре структурной группы, характеризующая действие третьего звена на второе. По масштабу сил находим числовое значение векторов.

, , ,

Таким образом, найдены реакции во всех кинематических парах структурной группы звеньев 2-3. Теперь в соответствии с порядком силового расчета и формулой строения механизма, следует перейти к анализу механизма 1-го класса.

 







Дата добавления: 2015-10-18; просмотров: 519. Нарушение авторских прав; Мы поможем в написании вашей работы!



Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...

Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...

Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...

Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...

Случайной величины Плотностью распределения вероятностей непрерывной случайной величины Х называют функцию f(x) – первую производную от функции распределения F(x): Понятие плотность распределения вероятностей случайной величины Х для дискретной величины неприменима...

Схема рефлекторной дуги условного слюноотделительного рефлекса При неоднократном сочетании действия предупреждающего сигнала и безусловного пищевого раздражителя формируются...

Уравнение волны. Уравнение плоской гармонической волны. Волновое уравнение. Уравнение сферической волны Уравнением упругой волны называют функцию , которая определяет смещение любой частицы среды с координатами относительно своего положения равновесия в произвольный момент времени t...

Кишечный шов (Ламбера, Альберта, Шмидена, Матешука) Кишечный шов– это способ соединения кишечной стенки. В основе кишечного шва лежит принцип футлярного строения кишечной стенки...

Принципы резекции желудка по типу Бильрот 1, Бильрот 2; операция Гофмейстера-Финстерера. Гастрэктомия Резекция желудка – удаление части желудка: а) дистальная – удаляют 2/3 желудка б) проксимальная – удаляют 95% желудка. Показания...

Ваготомия. Дренирующие операции Ваготомия – денервация зон желудка, секретирующих соляную кислоту, путем пересечения блуждающих нервов или их ветвей...

Studopedia.info - Студопедия - 2014-2024 год . (0.011 сек.) русская версия | украинская версия