Студопедия — ЯДЕРНЫЕ РЕАКЦИИ И ИХ ОСНОВНЫЕ ТИПЫ
Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

ЯДЕРНЫЕ РЕАКЦИИ И ИХ ОСНОВНЫЕ ТИПЫ






Ядерные реакции - это превращения атомных ядер при взаимодействии с элементарными частицами (в том числе и с g-квантами) или друг с другом. Наиболее распространенным видом ядерной реакции является реакция, записываемая символически следующим образом:

где Х и Y - исходное и конечное ядра, а и b - бомбардирующая и испускаемая (или испускаемые) в ядерной реакции частицы.

В ядерной физике эффективность взаимодействия характеризуют эффективным сечением s. С каждым видом взаимодействия частицы с ядром связывают свое эффективное сечение: эффективное сечение рассеяния определяет процессы рассеяния, эффективное сечение поглощения - процессы поглощения. Эффективное сечение ядерной реакции

где N - число частиц, падающих за единицу времени на единицу площади поперечного сечения вещества, имеющего в единице объема п ядер, dN - число этих частиц, вступающих в ядерную реакцию в слое толщиной дх. Эффективное сечение s имеет размерность площади и характеризует вероятность того, что при падении пучка частиц на вещество произойдет реакция. Единица эффективного сечения ядерных процессов - барн (1 барн =10-28 м 2).

В любой ядерной реакции выполняются законы сохранения электрических зарядов и массовых чисел: сумма зарядов (массовых чисел) ядер и частиц, вступающих в ядерную реакцию, равна сумме зарядов (массовых чисел) конечных продуктов (ядер и частиц) реакции. Выполняются также законы сохранения энергии, импульса и момента импульса.

В отличие от радиоактивного распада, который протекает всегда с выделением энергии, ядерные реакции могут быть как экзотермическими (с выделением энергии), так и эндотермическими (с поглощением энергии).

Важную роль в объяснении механизма многих ядерных реакций сыграло предположение Н. Бора (1936) о том, что ядерные реакции протекают в две стадии по следующей схеме:

Первая стадия - это захват ядром Х частицы а, приблизившейся к нему на расстояние действии ядерных сил (примерно 2 . 10-15 м), и образование промежуточного ядра С, называемого составным (или компаунд-ядром). Энергия влетевшей в ядро частицы быстро распределяется между нуклонами составного ядра, в результате чего оно оказывается в возбужденном состоянии. При столкновении нуклонов составного ядра один из нуклонов (или их комбинаций, например дейтрон - ядро тяжелого изотопа водорода - дейтерия, содержащее один протон и один нейтрон) или a-частица может получить энергию, достаточную для вылета из ядра. В результате возможна вторая стадия ядерной реакции - распад составного ядра на ядро Y и частицу b.

В ядерной физике вводится характерное ядерное время - время, необходимое для пролета частицей расстояния порядка величины, равной диаметру ядра (d 10-15 м). Так, для частицы с энергией 1 МэВ (что соответствует ее скорости v 107 м / с) характерное ядерное время t=10-15 м /107 м / c =10-22 c. С другой стороны, доказано, что время жизни составного ядра равно 10-16-10-12 с, т. е. составляет (106-1010). Это же означает, что за время жизни составного ядра может произойти очень много столкновений нуклонов между собой, т. е. перераспределение энергии между нуклонами действительно возможно. Следовательно, составное ядро живет настолько долго, что полностью «забывает», каким образом оно образовалось. Поэтому характер распада составного ядра (испускание им частицы b)- вторая стадия ядерной реакции - не зависит от способа образования составного ядра - первой стадии.

Если испущенная частица тождественна с захваченной (), то схема описывает рассеяние частицы: упругое - при Eb = Ea, неупругое - при .

Если же испущенная частица не тождественна с захваченной (), то имеем дело с ядерной реакцией в прямом смысле слова.

Некоторые реакции протекают без образования составного ядра, они называются прямыми ядерными взаимодействиями (например, реакции, вызываемые быстрыми нуклонами и дейтронами).

Ядерные реакции классифицируются по следующим признакам:

1) по роду участвующих в них частиц - реакции под.действием нейтронов; реакции под действием заряженных частиц (например, протонов, дейтронов, a-частиц); реакции под действием g-квантов;

2) по энергии вызывающих их частиц - реакции при малых энергиях (порядка электрон-вольт), происходящие в основном с участием нейтронов; реакции при средних энергиях (до нескольких мегаэлектрон-вольт), происходящие с участием g-квантов и заряженных частиц (протоны, a-частицы); реакции при высоких энергиях (сотни и тысячи мегаэлектрон-вольт), приводящие к рождению отсутствующих в свободном состоянии элементарных частиц и имеющие большое значение для их изучения;

3) по роду участвующих в них ядер -реакции на легких ядрах (А <50); реакции на средних ядрах (50< А <100); реакции на тяжелых ядрах (А >100);

4) по характеру происходящих ядерных превращений - реакции с испусканием нейтронов; реакции с испусканием за­ряженных частиц; реакции захвата (в случае этих реакций составное ядро не испускает никаких частиц, а переходит в основное состояние, излучая один или несколько g-квантов).

Первая в истории ядерная реакция осуществлена Э. Резерфордом (1919) при бомбардировке ядра азота a-частицами, испускаемыми радиоактивным источником:

ПОЗИТРОН. b+-РАСПАД. ЭЛЕКТРОННЫЙ ЗАХВАТ

П.Дираком было получено (1928) релятивистское волновое уравнение для электрона, которое позволило объяснить все основные свойства электрона, в том числе наличие у него спина и магнитного момента. Замечательной особенностью уравнения Дирака оказалось то, что из него для полной энергии свободного электрона получались не только положительные, но и отрицательные значения. Этот результат мог быть объяснен лишь предположением о существовании античастицы электрона - позитрона.

Гипотеза Дирака, недоверчиво воспринимавшаяся большинством физиков, была блестяще подтверждена в 1932 г. К.Андерсоном (американский физик, Нобелевская премия 1936г.), обнаружившим позитрон в составе космического излучения. Существование позитронов было доказано наблюдением их треков в камере Вильсона, помещенной в магнитном поле. Эти частицы в камере отклонялись так, как отклоняется движущийся положительный заряд. Опыты показали, что позитрон - частица с массой покоя, в точности равной массе покоя электрона, и спином /2, несущая положительный электриче­ский заряд + е.

Жолио-Кюри - Фредерик и Ирен, - бомбардируя различные ядра a-частицами (1934), обнаружили искусственно-радиоактивные ядра, испытывающие b--распад, а реакции на В, Аl и Mg привели к искусственно-радиоактивным ядрам, претерпевающим b+- распад, или позитронный распад:

(Нобелевская премия 1956 г.) Наличие в этих реакциях позитронов доказано при изучении их треков в камере Вильсона, помещенной в магнитное поле.

Таким образом, в экспериментах Жолио-Кюри, с одной стороны, открыта искусственная радиоактивность, а с другой - впервые обнаружен позитронный радиоактивный распад.

Энергетический b+-спектр, как и b--спектр, непрерывен. b+ - Распад подчиняется следующему правилу смещения:

Процесс b+-распада протекает так, как если бы один из протонов ядра превратился в нейтрон, испустив при этом позитрон и нейтрино:

причем одновременный выброс нейтрино вытекает из тех же соображений, которые излагались при обсуждении b--распада. Так как масса покоя протона меньше, чем у нейтрона, то реакция для свободного протона наблюдаться не может. Однако для протона, связанного в ядре благодаря ядерному взаимодействию частиц, эта реакция оказывается энергетически возможной.

Вскоре после опытов К.Андерсона, а также обоснования b+-распада было установлено, что позитроны могут рождаться при взаимодействии g-квантов большой энергии (Е g >;1,02 MэB =2mec2) c веществом. Этот процесс идет по схеме

Электронно-позитронные пары были действительно обнаружены в помещенной в магнитное поле камере Вильсона, в которой электрон и позитрон, имеющие противоположные по знаку заряды, отклоня­лись в противоположные стороны.

Для выполнения этого соотношения помимо выполнения законов сохранения энергии и импульса необходимо, чтобы фотон обладал целым спином, равным 0 или 1, поскольку спины электрона и позитрона равны 1/2. Ряд экспериментов и теоретических выкладок привели к выводу, что спин фотона действительно равен 1 (в единицах ).

При столкновении позитрона с электроном происходит их аннигиляция:

в ее процессе электронно-позитронная пара превращается в два g-кванта, причем энергия пары переходит в энергию фотонов. Появление в этом процессе двух g-квантов следует из закона сохранения импульса и энергии. Реакция подтверждена прямыми экспериментами под руководством Л.А.Арцимовича. Процессы возникновения и превращения электронно-позитронных пар - являются примером взаимосвязи различных форм материи: в этих процессах материя в форме вещества превращается в материю в форме электромагнитного поля и наоборот.

Для многих ядер превращение протона в нейтрон, помимо описанного процесса, происходит посредством электронного захвата, или е -захвата, при котором ядро спонтанно захватывает электрон с одной из внутренних оболочек атома (К, L и т.д.), испуская нейтрино:

Необходимость появления нейтрино вытекает из закона сохранения спина. Схема е -захвата:

т. е. один из протонов ядра превращается в нейтрон, заряд ядра убывает на единицу и оно смещается влево так же, как и при позитронном распаде.

Электронный захват обнаруживается по сопровождающему его характеристическому рентгеновскому излучению, возникающему при заполнении образовавшихся вакансий в электронной оболочке атома (именно так е -захват и был открыт в 1937 г.).

При е -захвате, кроме нейтрино, никакие другие частицы не вылетают, т. е. вся энергия распада уносится нейтрино. В этом е -захват (часто его называют третьим видом β-распада) существенно отличается от β -распадов, при которых вылетают две частицы, между которыми и распределяется энергия распада. Примером электронного захвата может служить превращение радиоактивного ядра бериллия в стабильное ядро :

 







Дата добавления: 2015-10-19; просмотров: 765. Нарушение авторских прав; Мы поможем в написании вашей работы!



Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...

Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...

Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...

Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...

Вопрос 1. Коллективные средства защиты: вентиляция, освещение, защита от шума и вибрации Коллективные средства защиты: вентиляция, освещение, защита от шума и вибрации К коллективным средствам защиты относятся: вентиляция, отопление, освещение, защита от шума и вибрации...

Задержки и неисправности пистолета Макарова 1.Что может произойти при стрельбе из пистолета, если загрязнятся пазы на рамке...

Вопрос. Отличие деятельности человека от поведения животных главные отличия деятельности человека от активности животных сводятся к следующему: 1...

Сущность, виды и функции маркетинга персонала Перснал-маркетинг является новым понятием. В мировой практике маркетинга и управления персоналом он выделился в отдельное направление лишь в начале 90-х гг.XX века...

Разработка товарной и ценовой стратегии фирмы на российском рынке хлебопродуктов В начале 1994 г. английская фирма МОНО совместно с бельгийской ПЮРАТОС приняла решение о начале совместного проекта на российском рынке. Эти фирмы ведут деятельность в сопредельных сферах производства хлебопродуктов. МОНО – крупнейший в Великобритании...

ОПРЕДЕЛЕНИЕ ЦЕНТРА ТЯЖЕСТИ ПЛОСКОЙ ФИГУРЫ Сила, с которой тело притягивается к Земле, называется силой тяжести...

Studopedia.info - Студопедия - 2014-2024 год . (0.013 сек.) русская версия | украинская версия