Студопедия — Решение систем методом Гаусса
Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Решение систем методом Гаусса






Одним из наиболее универсальных и эффективных методов решений систем линейных уравнений является метод Гаусса, состоящий в последовательном исключении неизвестных.

Пусть дана система уравнений

(25)

Процесс решения по методу Гаусса состоит из двух этапов. На первом этапе (прямой ход) система приводится к ступенчатому (треугольному или трапециевидному) виду. Для этого над строками расширенной матрицы системы проводятся элементарные преобразования, приводящие эту матрицу к ступенчатому виду. Полученная матрица будет эквивалентной матрице , значит и система уравнений, полученная с помощью новой матрицы будет равносильной данной системе уравнений.

Если в процессе приведения системы (25) к ступенчатому виду появятся нулевые уравнения, то есть равенства вида 0=0, их отбрасывают. Если же появится уравнение вида , а то это говорит о том, что данная система уравнений несовместна.

Второй этап (обратный ход) заключается в решении ступенчатой системы. Если в последнем уравнении новой системы содержится одно неизвестное, то исходная система имеет единственное решение. Из последнего уравнения находим , из предпоследнего уравнения , далее поднимаясь по системе вверх, найдем все остальные неизвестные , . Если в последнем уравнении преобразованной системы более чем одно неизвестное, то данная система имеет множество решений (система является неопределенной). Из последнего уравнения выражаем первое неизвестное через остальные неизвестные . Затем подставляем значение в предпоследнее уравнение системы и выражаем через и так далее. Придавая свободным неизвестным произвольные значения, получим бесчисленное множество решений системы. На практике удобно, чтобы коэффициент был равен 1 (уравнения переставить местами, либо разделить обе части первого уравнения на ).

Пример 37. Решить систему уравнений методом Гаусса:

Решение. Составим расширенную матрицу данной системы

Так как , , поменяем местами первую и вторую строки матрицы местами:

~ .

Сначала элементы первой строки умножим на (-2) и прибавим к соответствующим элементам второй строки, а затем элементы первой строки умножим на (-7) и прибавим к элементам третьей строки:

~ .

Элементы второй строки умножим на и прибавим к элементам третьей строки:

~ .

Восстановим систему по последней матрице

Получили систему, состоящую из двух уравнений и содержащую три неизвестных, то есть с помощью элементарных преобразований данную систему уравнений привели к ступенчатому виду, в которой нет уравнений вида , где . Поэтому система уравнений имеет бесчисленное множество решений. Выразим через из второго уравнения:

Подставим полученное выражение в первое уравнение:

Пусть , где С – любое действительное число, тогда полученное решение будет называться общим решением

Пусть , тогда получаем решение, которое будет называться частным решением системы:

 

Пример 38. Решить систему уравнений методом Гаусса

Решение. Составим расширенную матрицу данной системы уравнений

Элементы первой строки умножим на (-2) и прибавим к элементам второй строки, затем элементы первой строки умножим на (-7) и прибавим к элементам третьей строки:

~ .

Элементы второй строки умножим на (-3) и прибавим к элементам третьей строки:

~ .

Элементы третьей строки умножим на :

~ .

С помощью элементарных преобразований получили матрицу треугольного вида, значит, данная система уравнений имеет единственное решение.

С помощью полученной преобразованной расширенной матрицы запишем соответствующую систему уравнений

Зная значение , из второго уравнения находим :

или

Используя значения и , из первого уравнения находим :

или окончательно







Дата добавления: 2015-10-19; просмотров: 591. Нарушение авторских прав; Мы поможем в написании вашей работы!



Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...

Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...

Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...

Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...

Сосудистый шов (ручной Карреля, механический шов). Операции при ранениях крупных сосудов 1912 г., Каррель – впервые предложил методику сосудистого шва. Сосудистый шов применяется для восстановления магистрального кровотока при лечении...

Трамадол (Маброн, Плазадол, Трамал, Трамалин) Групповая принадлежность · Наркотический анальгетик со смешанным механизмом действия, агонист опиоидных рецепторов...

Мелоксикам (Мовалис) Групповая принадлежность · Нестероидное противовоспалительное средство, преимущественно селективный обратимый ингибитор циклооксигеназы (ЦОГ-2)...

Гидравлический расчёт трубопроводов Пример 3.4. Вентиляционная труба d=0,1м (100 мм) имеет длину l=100 м. Определить давление, которое должен развивать вентилятор, если расход воздуха, подаваемый по трубе, . Давление на выходе . Местных сопротивлений по пути не имеется. Температура...

Огоньки» в основной период В основной период смены могут проводиться три вида «огоньков»: «огонек-анализ», тематический «огонек» и «конфликтный» огонек...

Упражнение Джеффа. Это список вопросов или утверждений, отвечая на которые участник может раскрыть свой внутренний мир перед другими участниками и узнать о других участниках больше...

Studopedia.info - Студопедия - 2014-2024 год . (0.008 сек.) русская версия | украинская версия