Студопедия — Системы линейных уравнений. Системой линейных алгебраических уравнений, содержащей т уравнений и п неизвестных, называется система вида
Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Системы линейных уравнений. Системой линейных алгебраических уравнений, содержащей т уравнений и п неизвестных, называется система вида






Раздел 5. ЭЛЕМЕНТЫ ЛИНЕЙНОЙ АЛГЕБРЫ

Основные понятия

Системой линейных алгебраических уравнений, содержащей т уравнений и п неизвестных, называется система вида

где числа аij, i= , j= называются коэффициентами системы, числа bi – свободными членами. Подлежат нахождению числа хп.

Такую систему удобно записывать в компактной матричной форме .

Здесь А – матрица коэффициентов системы, называемая основной матрицей:

,

– вектор-столбец из неизвестных хj, – вектор-столбец из свободных членов bi.

Расширенной матрицей системы называется матрица системы, дополненная столбцом свободных членов

.

Решением системы называется п значений неизвестных х11, х22,..., хпп, при подстановке которых все уравнения системы обращаются в верные равенства. Всякое решение системы можно записать в виде матрицы-столбца .

Система уравнений называется совместной, если она имеет хотя бы одно решение, и несовместной, если она не имеет ни одного решения.

Совместная система называется определенной, если она имеет единственное решение, и неопределенной, если она имеет более одного решения. В последнем случае каждое ее решение называется частным решением системы. Совокупность всех частных решений называется общим решением.

Решить систему – это значит выяснить, совместна она или не совместна. Если система совместна, то найти ее общее решение.

Две системы называются эквивалентными (равносильными), если они имеют одно и то же общее решение. Другими словами, системы эквивалентны, если каждое решение одной из них является решением другой, и наоборот.

Эквивалентные системы получаются, в частности, при элементарных преобразованиях системы при условии, что преобразования выполняются лишь над строками матрицы.

Система линейных уравнений называется однородной, если все свободные члены равны нулю:

Однородная система всегда совместна, так как х12=…=хп=0 является решением системы. Это решение называется нулевым или тривиальным.

Решение систем линейных уравнений

Пусть дана произвольная система т линейных уравнений с п неизвестными

Теорема 1 (Кронекера-Капелли). Система линейных алгебраических уравнений совместна тогда и только тогда, когда ранг расширенной матрицы равен рангу основной матрицы.

Теорема 2. Если ранг совместной системы равен числу неизвестных, то система имеет единственное решение.

Теорема 3. Если ранг совместной системы меньше числа неизвестных, то система имеет бесконечное множество решений.

П р и м е р. Исследовать на совместность систему

Решение. , r(A)=1; , r()=2, .

Таким образом, r (A)¹ r (), следовательно, система несовместна.

 

Решение невырожденных систем линейных уравнений. Формулы Крамера

Пусть дана система п линейных уравнений с п неизвестными

или в матричной форме А∙Х=В.

Основная матрица А такой системы – квадратная. Определитель этой матрицы называется определителем системы. Если определитель системы отличен от нуля, то система называется невырожденной.

Найдем решение данной системы уравнений в случае ∆¹0. умножив обе части уравнения А∙Х=В слева на матрицу А-1, получим А-1∙ А∙Х= А-1∙В. Поскольку А-1∙ А=Е и Е∙Х=Х, то Х= А-1∙ В. Данный способ решения системы называют матричным.

Из матричного способа вытекают формулы Крамера , где ∆ – определитель основной матрицы системы, а ∆ i – определитель, полученный из определителя ∆ путем замены i -го столбца коэффициентов столбцом из свободных членов.

П р и м е р. Решить систему

Решение. , 7¹0, , . Значит, х1= , х2= .

Решение систем линейных уравнений методом Гаусса

Метод Гаусса состоит в последовательном исключении неизвестных.

Пусть дана система уравнений

Процесс решения по методу Гаусса состоит из двух этапов. На первом этапе (прямой ход) система приводится к ступенчатому (в частности, треугольному) виду.

где k ≤ п, аii ¹ 0, i= . Коэффициенты аii называются главными элементами системы.

На втором этапе (обратный ход) идет последовательное определение неизвестных из этой ступенчатой системы.

Замечания:

1. Если ступенчатая система оказывается треугольной, т.е. k=n, то исходная система имеет единственное решение. Из последнего уравнения находим хп, из предпоследнего уравнения находим хп-1, далее поднимаясь по системе вверх, найдем все остальные неизвестные.

2. На практике удобнее работать с расширенной матрицей системы, выполняя все элементарные преобразования над ее строками. Удобно, чтобы коэффициент а11 был равен 1(уравнения переставить местами, либо разделить на а11 ¹1).

П р и м е р. Решить систему методом Гаусса

Решение. В результате элементарных преобразований над расширенной матрицей системы

~ ~ ~

~

исходная система свелась к ступенчатой:

Поэтому общее решение системы: x2=5x4 -13x3 -3; x1=5x4 -8x3 -1.

Если положить, например, х34=0, то найдем одно из частных решений этой системы х1=-1, х2=-3, х3=0, х4=0.

Систем однородных линейных уравнений

Пусть дана система линейных однородных уравнений

Очевидно, что однородная система всегда совместна, она имеет нулевое (тривиальное) решение.

Теорема 4. Для того, чтобы система однородных уравнений имела ненулевое решение, необходимо и достаточно, чтобы ранг ее основной матрицы был меньше числа неизвестных, т.е. r<n.

Теорема 5. Для того, чтобы однородная система п линейных уравнений с п неизвестными имела ненулевое решение, необходимо и достаточно, чтобы определитель ее основной матрицы был равен нулю, т.е. ∆=0.

Если система имеет ненулевые решения, то ∆=0.

П р и м е р. Решить систему

Решение. , r(A)=2 , п=3. Так как r<n, то система имеет бесконечное множество решений.

, . Стало быть, х1= =2х3, х2= =3х3 – общее решение.

Положив х3=0, получим одно частное решение: х1=0, х2=0, х3=0. Положив х3=1, получим второе частное решение: х1=2, х2=3, х3=1 и т.д.

Вопросы для контроля

ü Что такое система линейных алгебраических уравнений?

ü Поясните следующие понятия: коэффициент, свободный член, основная и расширенная матрицы.

ü Какими бывают системы линейных уравнений? Сформулируйте теорему Кронкера-Капелли (о совместности системы линейных уравнений).

ü Перечислите и поясните методы решения систем линейных уравнений.

 







Дата добавления: 2015-10-19; просмотров: 540. Нарушение авторских прав; Мы поможем в написании вашей работы!



Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...

Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...

Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...

Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

Понятие метода в психологии. Классификация методов психологии и их характеристика Метод – это путь, способ познания, посредством которого познается предмет науки (С...

ЛЕКАРСТВЕННЫЕ ФОРМЫ ДЛЯ ИНЪЕКЦИЙ К лекарственным формам для инъекций относятся водные, спиртовые и масляные растворы, суспензии, эмульсии, ново­галеновые препараты, жидкие органопрепараты и жидкие экс­тракты, а также порошки и таблетки для имплантации...

Тема 5. Организационная структура управления гостиницей 1. Виды организационно – управленческих структур. 2. Организационно – управленческая структура современного ТГК...

Примеры решения типовых задач. Пример 1.Степень диссоциации уксусной кислоты в 0,1 М растворе равна 1,32∙10-2   Пример 1.Степень диссоциации уксусной кислоты в 0,1 М растворе равна 1,32∙10-2. Найдите константу диссоциации кислоты и значение рК. Решение. Подставим данные задачи в уравнение закона разбавления К = a2См/(1 –a) =...

Экспертная оценка как метод психологического исследования Экспертная оценка – диагностический метод измерения, с помощью которого качественные особенности психических явлений получают свое числовое выражение в форме количественных оценок...

В теории государства и права выделяют два пути возникновения государства: восточный и западный Восточный путь возникновения государства представляет собой плавный переход, перерастание первобытного общества в государство...

Studopedia.info - Студопедия - 2014-2024 год . (0.007 сек.) русская версия | украинская версия