Студопедия — Примеры решения задач. Пример 1.Определить время, за которое электрон атома водорода в модели Резерфорда упадет на ядро вследствие потери энергии на излучение
Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Примеры решения задач. Пример 1.Определить время, за которое электрон атома водорода в модели Резерфорда упадет на ядро вследствие потери энергии на излучение






Пример 1. Определить время, за которое электрон атома водорода в модели Резерфорда упадет на ядро вследствие потери энергии на излучение. Первоначальный радиус орбиты электрона принять равным Боровскому радиусу а.

Электрон в атоме движется под действием кулоновской силы, обеспечивающей центростремительное ускорение:

,

где е – величина заряда электрона, - его радиус-вектор относительно ядра (рис. 4.3).

Т.к. масса ядра много больше массы электрона, то центр масс атома совпадает с центром ядра. Поэтому в системе центра масс дипольный момент атома совпадает с дипольным моментом электрона и равен .

Индукция магнитного поля дипольного излучения электрона , где r ¢ - расстояние от ядра до точки наблюдения, а плотность потока энергии излучения

.

Энергия излучения, протекающая в единицу времени через площадку на сферической поверхности r ¢ = const,

.

В последнем выражении , т.к. из закона сохранения энергии следует, что поток энергии в единицу времени через любую поверхность r ¢ = const остается постоянным и не зависит от времени задержки t. Выполняя интегрирование по полному телесному углу, получаем

.

 

Для электрона в атоме

и .

Следовательно, энергия, излучаемая электроном атома в единицу времени, равна:

.

Для определения времени жизни атома найдем полную энергию электрона, находящегося на круговой орбите радиуса r. Учтем, что и . Поэтому кинетическая энергия электрона в атоме . С другой стороны, потенциальная энергия электрона . Следовательно, полная энергия и является функцией расстояния электрона от ядра r. Тогда полученное выражение для энергии, теряемой на излучение в единицу времени, можно преобразовать к виду:

.

Разделяя переменные, получаем

.

При выполнении интегрирования учтем, что в начальный момент времени энергия электрона , а падению электрона на ядро соответствует энергия W¢ ® - ¥. Тогда

.

Выполняя интегрирование, получаем

.

 

Пример 2. Определить среднюю мощность излучения рамки с током . Площадь рамки S. Какой длины должно быть плечо l электрического диполя зарядом q , чтобы его мощность излучения равнялась мощности излучения рамки?

Т.к. электрический дипольный момент рамки с током равен 0, то поле излучения определяется ее магнитным моментом :

.

Здесь - вектор нормали к рамке с током, а - единичный вектор в направлении на точку наблюдения поля (см. рис. 4.4).

Плотность потока энергии

.

Тогда энергия, протекающая в единицу времени через площадку , будет равной

 

.

Интегрирование по телесному углу приводит к

.

Так же, как и в предыдущем примере, при нахождении мощности излучения рамки в полученном выражении время задержки t можно опустить. Тогда средняя за период мощность излучения рамки с током будет равной

.

В соответствии с выражением (4.23) для электрического дипольного момента, изменяющегося по гармоническому закону, имеем . Сравнивая результаты, приходим к выводу, что электрический диполь излучает ту же мощность, что и рамка с током при длине плеча диполя . Для гармонически изменяющегося заряда q такого, что , получаем , где l - длина волны электромагнитного излучения.







Дата добавления: 2015-10-19; просмотров: 2208. Нарушение авторских прав; Мы поможем в написании вашей работы!



Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...

Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...

Логические цифровые микросхемы Более сложные элементы цифровой схемотехники (триггеры, мультиплексоры, декодеры и т.д.) не имеют...

Эндоскопическая диагностика язвенной болезни желудка, гастрита, опухоли Хронический гастрит - понятие клинико-анатомическое, характеризующееся определенными патоморфологическими изменениями слизистой оболочки желудка - неспецифическим воспалительным процессом...

Признаки классификации безопасности Можно выделить следующие признаки классификации безопасности. 1. По признаку масштабности принято различать следующие относительно самостоятельные геополитические уровни и виды безопасности. 1.1. Международная безопасность (глобальная и...

Прием и регистрация больных Пути госпитализации больных в стационар могут быть различны. В цен­тральное приемное отделение больные могут быть доставлены: 1) машиной скорой медицинской помощи в случае возникновения остро­го или обострения хронического заболевания...

Принципы резекции желудка по типу Бильрот 1, Бильрот 2; операция Гофмейстера-Финстерера. Гастрэктомия Резекция желудка – удаление части желудка: а) дистальная – удаляют 2/3 желудка б) проксимальная – удаляют 95% желудка. Показания...

Ваготомия. Дренирующие операции Ваготомия – денервация зон желудка, секретирующих соляную кислоту, путем пересечения блуждающих нервов или их ветвей...

Билиодигестивные анастомозы Показания для наложения билиодигестивных анастомозов: 1. нарушения проходимости терминального отдела холедоха при доброкачественной патологии (стенозы и стриктуры холедоха) 2. опухоли большого дуоденального сосочка...

Studopedia.info - Студопедия - 2014-2024 год . (0.01 сек.) русская версия | украинская версия