Студопедия — Развитие аппаратного обеспечения
Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Развитие аппаратного обеспечения






 

Учебник для вузов

 

Изготовление оригинал-макета

ООО "Билана В"

 

Подписано в печать 29.03.2001. Формат 60х88/16. Гарнитура Таймс

Печать офсетная. Усл. печ. л. 26,0. Уч.-изд. л. 23,9. Тираж 3000 экз.

Заказ 663. Изд. № 389

 

ЛР № 064625 от 06.06.1996 г.

000 «Флинта», 117342, г. Москва, ул. Бутлерова, д. 17-Б, комн. 332

Тел/факс 336-03-11; тел. 334-82-65. E-mail: [email protected], [email protected]

 

ЛР № 020297 от 23.06.1997 г.

Издательство «Наука», 117864, ГСП-7, Москва В-485, ул. Профсоюзная, д. 90

 

Отпечатано с готовых диапозитивов во ФГУП ИПК «Ульяновский

Дом печати». 432980, г. Ульяновск, ул. Гончарова, 14

Содержание

  • Развитие аппаратного обеспечения
  • Современные инфраструктурные решения
    • Появление блэйд-систем
    • Преимущества Blade-серверов
    • Появление систем и сетей хранения данных
    • Сети хранения данных
    • Топологии SAN
    • Консолидация ИТ инфраструктуры
  • Краткие итоги:
  • Ключевые термины:

Практику к данному курсу Вы можете скачать здесь.

Целью данной лекции является знакомство с основными этапами развития вычислительной техники. Анализ современных тенденций развития аппаратного обеспечения, приведших к появлению технологий облачных вычислений.

Развитие аппаратного обеспечения

Для того, чтобы понять, как появились " облачные " вычисления, необходимо представлять основные моменты процесса развития вычислений и вычислительной техники.

В наше время жизнь без компьютеров не представляется возможной. Внедрение вычислительной техники проникло почти во все жизненные аспекты, как личные, так и профессиональные. Развитие компьютеров было достаточно быстрым. Началом эволюционного развития компьютеров стал 1930 год, когда двоичная арифметика была разработана и стала основой компьютерных вычислений и языков программирования. В 1939 году были изобретены электронно-вычислительные машины, выполняющие вычисление в цифровом виде. Появление вычислительных устройств приходится на 1942 год, когда было изобретено устройство, которое могло механически добавлять числа. Вычисления производились с использованием электронных ламп.

Появившаяся в 1941 году модель Z3 Конрада Цузе в немецкой Лаборатории Авиации в Берлине была одним из наиболее значительных событий в развитии компьютеров, потому что эта машина поддерживала вычисления как с плавающей точкой, так и двоичную арифметику. Это устройство рассматривают как самый первый компьютер, который был полностью работоспособным. Язык программирования считают "Turing-complete", если он попадает в тот же самый вычислительный класс, как машина Тьюринга.

Первое поколение современных компьютеров появилось в 1943, когда были разработаны Марк I и машина Колосс. С финансовой поддержкой от IBM (International Business Machines Corporation) Марк был сконструирован и разработан в Гарвардском университете. Это был электромеханический программируемый компьютер общего назначения. Первое поколение компьютеров было построено с использованием соединенных проводов и электронных ламп (термоэлектронных ламп). Данные хранились на бумажных перфокартах. Колосс использовался во время Второй мировой войны, чтобы помочь расшифровать зашифрованные сообщения.

Чтобы выполнить его задачу расшифровки, Колосс сравнил два потока данных, прочитанных на высокой скорости с перфоленты. Колосс оценивал поток данных, считая каждое совпадение, которое было обнаружено, основываясь на программируемой Булевой функции. Для сравнения с другими данными был создан отдельный поток.

Другой компьютер общего назначения этой эры был ENIAC (Электронный Числовой Интегратор и Компьютер), который был построен в 1946. Это было первым компьютером, способным к перепрограммированию, чтобы решать полный спектр вычислительных проблем. ENIAC содержал 18 000 термоэлектронных ламп, весивший более чем 27 тонн, и потреблявший электроэнергии 25 киловатт в час. ENIAC выполнял 100 000 вычислений в секунду. Изобретение транзистора означало, что неэффективные термоэлектронные лампы могли быть заменены более мелкими и надежными компонентами. Это было следующим главным шагом в истории вычислений.

Компьютеры Transistorized отметили появление второго поколения компьютеров, которые доминировали в конце 1950-ых и в начале 1960-ых. Несмотря на использование транзисторов и печатных схем, эти компьютеры были все еще большими и дорогостоящими. В основном они использовались университетами и правительством. Интегральная схема или чип были развиты Джеком Килби. Благодаря этому достижению он получил Нобелевскую премию по физике в 2000 году.

Изобретение Килби вызвало взрыв в развитии компьютеров третьего поколения. Даже при том, что первая интегральная схема была произведена в сентябре 1958, чипы не использовались в компьютерах до 1963. Историю мейнфреймов - принято отсчитывать с появления в 1964 году универсальной компьютерной системы IBM System/360, на разработку которой корпорация IBM затратила 5 млрд долларов.

Мейнфрейм - это главный компьютер вычислительного центра с большим объемом внутренней и внешней памяти. Он предназначен для задач, требующих сложные вычислительные операции. Сам термин "мейнфрейм" происходит от названия типовых процессорных стоек этой системы. В 1960-х — начале 1980-х годов System/360 была безоговорочным лидером на рынке. Её клоны выпускались во многих странах, в том числе — в СССР (серия ЕС ЭВМ). В то время такие мэйнфреймы, как IBM 360 увеличили способности хранения и обработки, интегральные схемы позволяли разрабатывать миникомпьютеры, что позволило большому количеству маленьких компаний производить вычисления. Интеграция высокого уровня диодных схем привела к развитию очень маленьких вычислительных единиц, что привело к следующему шагу развития вычислений.

В ноябре 1971 Intel выпустили первый в мире коммерческий микропроцессор, Intel 4004. Это был первый полный центральный процессор на одном чипе и стал первым коммерчески доступным микропроцессором. Это было возможно из-за развития новой технологии кремниевого управляющего электрода. Это позволило инженерам объединить на много большее число транзисторов на чипе, который выполнял бы вычисления на небольшой скорости. Эта разработка способствовала появлению компьютерных платформ четвертого поколения.

Компьютеры четвертого поколения, которые развивались в это время, использовали микропроцессор, который помещает способности компьютерной обработки на единственном чипе. Комбинируя память произвольного доступа (RAM), разработанную Intel, компьютеры четвертого поколения были быстрее, чем когда-либо прежде и занимали на много меньшую площадь. Процессоры Intel 4004 были способны выполнять всего 60 000 инструкций в секунду. Микропроцессоры, которые развились из Intel 4004 разрешенные изготовителями для начала развития персональных компьютеров, маленьких достаточно дешевых, чтобы быть купленными широкой публикой. Первым коммерчески доступным персональным компьютером был MITS Altair 8800, выпущенный в конце 1974. В последствии были выпущены такие персональные компьютеры, как Apple I и II, Commodore PET, VIC-20, Commodore 64, и, в конечном счете, оригинальный IBM-PC в 1981. Эра PC началась всерьез к середине 1980-ых. В течение этого времени IBM-PC, Commodore Amiga и Atari ST были самыми распространенными платформами PC, доступными общественности. Даже при том, что микровычислительная мощность и память увеличились на много порядков, начиная с изобретения из Intel 4004 процессоров, технологии чипов интеграции высокого уровня (LSI) или интеграция сверхвысокого уровня (VLSI) сильно не изменились. Поэтому большинство сегодняшних компьютеров все еще попадает в категорию компьютеров четвертого поколения.

Одновременно с резким ростом производства персональных компьютеров в начале 1990-х начался кризис рынка мейнфреймов, пик которого пришёлся на 1993 год. Многие аналитики заговорили о полном вымирании мейнфреймов, о переходе от централизованной обработки информации к распределённой (с помощью персональных компьютеров, объединённых двухуровневой архитектурой "клиент-сервер"). Многие стали воспринимать мейнфреймы как вчерашний день вычислительной техники, считая Unix- и PC-серверы более современными и перспективными.

C 1994 года вновь начался рост интереса к мейнфреймам. Дело в том, что, как показала практика, централизованная обработка на основе мейнфреймов решает многие задачи построения информационных систем масштаба предприятия проще и дешевле, чем распределённая. Многие из идей, заложенных в концепции облачных вычислений также "возвращают" нас к эпохе мэйнфреймов, разумеется с поправкой на время. Еще шесть лет назад в беседе с Джоном Мэнли, одним из ведущих научных сотрудников центра исследований и разработок HP в Бристоле, обсуждалась тема облачных вычислений, и Джон обратил внимание на то, что основные идеи cloud computing до боли напоминают мэйнфреймы, только на другом техническом уровне: "Все идет от мэйнфреймов. Мэйнфреймы научили нас тому, как в одной среде можно изолировать приложения, – умение, критически важное сегодня".







Дата добавления: 2015-10-19; просмотров: 1093. Нарушение авторских прав; Мы поможем в написании вашей работы!



Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...

Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...

Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...

Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...

Педагогическая структура процесса социализации Характеризуя социализацию как педагогический процессе, следует рассмотреть ее основные компоненты: цель, содержание, средства, функции субъекта и объекта...

Типовые ситуационные задачи. Задача 1. Больной К., 38 лет, шахтер по профессии, во время планового медицинского осмотра предъявил жалобы на появление одышки при значительной физической   Задача 1. Больной К., 38 лет, шахтер по профессии, во время планового медицинского осмотра предъявил жалобы на появление одышки при значительной физической нагрузке. Из медицинской книжки установлено, что он страдает врожденным пороком сердца....

Типовые ситуационные задачи. Задача 1.У больного А., 20 лет, с детства отмечается повышенное АД, уровень которого в настоящее время составляет 180-200/110-120 мм рт Задача 1.У больного А., 20 лет, с детства отмечается повышенное АД, уровень которого в настоящее время составляет 180-200/110-120 мм рт. ст. Влияние психоэмоциональных факторов отсутствует. Колебаний АД практически нет. Головной боли нет. Нормализовать...

Лечебно-охранительный режим, его элементы и значение.   Терапевтическое воздействие на пациента подразумевает не только использование всех видов лечения, но и применение лечебно-охранительного режима – соблюдение условий поведения, способствующих выздоровлению...

Тема: Кинематика поступательного и вращательного движения. 1. Твердое тело начинает вращаться вокруг оси Z с угловой скоростью, проекция которой изменяется со временем 1. Твердое тело начинает вращаться вокруг оси Z с угловой скоростью...

Условия приобретения статуса индивидуального предпринимателя. В соответствии с п. 1 ст. 23 ГК РФ гражданин вправе заниматься предпринимательской деятельностью без образования юридического лица с момента государственной регистрации в качестве индивидуального предпринимателя. Каковы же условия такой регистрации и...

Studopedia.info - Студопедия - 2014-2024 год . (0.013 сек.) русская версия | украинская версия