Студопедия — СВОЙСТВА ФУНКЦИЙ, НЕПРЕРЫВНЫХ НА ОТРЕЗКЕ
Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

СВОЙСТВА ФУНКЦИЙ, НЕПРЕРЫВНЫХ НА ОТРЕЗКЕ






 

Теорема 1. Если функция f (x) на отрезке [ a; b ] непрерывна, то она достигает на этом отрезке своих наименьшего m и наибольшего M значений, то есть для любых x Î[ a; b ] выполняется неравенство:

m ≤ f (x) ≤ M.

 

Теорема 2. Если функция f (x) на отрезке [ a; b ] непрерывна, то для любого числа С, удовлетворяющего неравенству m ≤ С ≤ M, на отрезке [ a; b ], найдется хотя бы одна точа х о, в которой выполняется равенство:

f (х о) = С.

 

Теорема 3. Если функция f (x) на отрезке [ a; b ] непрерывна и на концах этого отрезка имеет значения различных знаков, то существует хотя бы одна точка х оÎ(a; b), в которой выполняется равенство:

f (х о) = 0.

 

Теорема 4 (теорема Ролля)

Если функция f (x) определена на [ a; b ] и выполнены следующие условия:

1. f (x) непрерывна на [ a; b ];

2. f (x) дифференцируема на (a; b);

3. f (a) = f (b),

то внутри этого отрезка найдется хотя бы одна точка х о, в которой выполняется равенство:

f ' (хо) = 0.

Доказательство. Так как f (x) непрерывна на [ a; b ], то она достигает на этом отрезке своих наименьшего m и наибольшего M значений.

Возможны два случая:

1) m = M,

2) m < M.

1) Если m = M, то f (x) = const = m = M. Тогда f '(x) = 0 при любом x Î (a; b).

Следовательно, в этом случае теорема верна и при этом в качестве х о можно рассматривать любое значение x Î (a; b).

2) Если m < M, то, исходя из условия f (a) = f (b), по крайней мере одно из чисел m или M не равно f (a) = f (b). Для определенности предположим, что M – наибольшее значение f (x) достигается не на концах отрезка [ a; b ], а в некоторой внутренней точке х о Î (a; b). Тогда в точке х о для приращения функции справедливо неравенство: D y = f (х о + D x) - f (х о) ≤ 0, так как f (х о) = M – наибольшее значение f (x) на [ a; b ] и D x такое, что х о + D x Î [ a; b ].

· Если D x > 0, то и существует

· Если D x < 0, то и существует

Так как по условию теоремы функция f (x) дифференцируема при x Î (a; b), то b в точке х о существует производная. Значит справедливы равенства:

f ' (х о +0) = f ' (х о -0) = f ' (х о) = 0.

Теорема доказана.

 

Геометрический смысл теоремы Ролля

С геометрической точки зрения терема Ролля означает, что график функции, непрерывной на отрезке [ a; b ], дифференцируемой на интервале (a; b) и принимающей на концах отрезка равные значения, имеет хотя бы одну точку (х о ; f (х о)), где х оÎ (a; b), в которой касательная параллельна оси O x (рис.7)

Рис. 7

Теорема 5 (теорема Лагранжа).

Если функция f (x) определена на [ a; b ] и выполнены следующие условия:

1) f (x) непрерывна на отрезке [ a; b ],

2) f (x) дифференцируема на интервале (a; b), то внутри этого отрезка существует хотя бы одна точка х о, в которой выполняется равенство:

f ' (хо) = .

Доказательство:Рассмотрим вспомогательную функцию F (x) = f (x) + l× x, где l = const. Потребуем, что бы для F (x) выполнялось условие F (a) = F (b).

Так как F (a) = f (a) + l × a; F (b) = f (b) + l × b, то получим равенство:

f (a) + l × a = f (b) + l × b.

Отсюда выразим значение l:

l = - .

При этом значении l функция F (x) = f (x) - .

Функция F (x) удовлетворяет всем условиям теоремы Ролля:

F (x) непрерывна на [ a; b ]:

F (x) дифференцируема на (a; b)

F (a) = F (b).

Следовательно, по теореме Ролля на (a; b) существует хотя бы одна точка х о, в которой выполняется равенство:

F ' (х о) = 0.

Найдем F '(x):

F ' (x) = f '(x) -

Поэтому F ' (x) = f ' (хо) -

=> f ' (хо) =

Теорема доказана.

 

Геометрический смысл теоремы Лагранжа

С геометрической точки зрения теорема Лагранжа означает, что график функции, непрерывной на отрезке [ a; b ] и дифференцируемой на интервале (a; b), имеет хотя бы одну точку (х о; f (х о), в которой касательная параллельна секущей, проходящей через точки A (a; f (a)) и B (b; f (b)) (рис.8)

 

Рис. 8

Теорема 6 (теорема Коши).

Если функции f (x) и g (x) определены на отрезке [ a; b ] и удовлетворяют условиям:

1) f (x) и g (x) непрерывны на [ a; b ];

2) f (x) и g (x) дифференцируемы на (a; b);

3) g ' (x) ¹ 0 при любом x Î (a; b),

то внутри отрезка [ a; b ] найдется хотя бы одна точка х о, в которой выполняется равенство:

Доказательство аналогично доказательству теоремы 5 при вспомогательной функции

F (x) = f (x) + l × g (x),

где l = const, которую выбирают так, чтобы F (a) = F (b).

 

Теорема 7 (правило Лопиталя).

Если функции f (x) и g (x) определены в некоторой окрестности точки х о и в этой окрестности они удовлетворяют условиям:

1) f (x) и g (x) дифференцируемы в каждой точке, за исключением, может быть, самой точки х о;

2) g ' (x) ¹ 0 для любого x из этой окрестности;

3) или

тогда, если существует конечный или бесконечный, то выполняется равенство:

= .

Замечание 1. Это правило Лопиталя используется для раскрытия неопределенностей типа или , возникающих при вычислении пределов. Если под знаком предела оказывается неопределенность другого типа: 0×∞, ∞ - ∞, 10, 00 или ∞0, то с помощью тождественных алгебраических преобразований такая неопределенность приводится к или , а затем можно применить правило Лопиталя.

 

Замечание 2. Если к условиям теоремы 6 добавить дифференцируемость функций f '(x) и g '(x) в окрестности точки х о, то при выполнении остальных требований для f '(x) и g '(x) правило Лопиталя можно применить повторно. При этом будет справедливо равенство:

= =

 

Пример 1. Вычислить предел:

Пример 2. Вычислить предел:

Пример 3. Вычислить предел:

Пример 4. Вычислить предел:

.

Пример 5. Вычислить предел:

Пример 6. Вычислить предел:

 

 







Дата добавления: 2015-10-19; просмотров: 450. Нарушение авторских прав; Мы поможем в написании вашей работы!



Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...

Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...

Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...

Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...

ФАКТОРЫ, ВЛИЯЮЩИЕ НА ИЗНОС ДЕТАЛЕЙ, И МЕТОДЫ СНИЖЕНИИ СКОРОСТИ ИЗНАШИВАНИЯ Кроме названных причин разрушений и износов, знание которых можно использовать в системе технического обслуживания и ремонта машин для повышения их долговечности, немаловажное значение имеют знания о причинах разрушения деталей в результате старения...

Различие эмпиризма и рационализма Родоначальником эмпиризма стал английский философ Ф. Бэкон. Основной тезис эмпиризма гласит: в разуме нет ничего такого...

Индекс гингивита (PMA) (Schour, Massler, 1948) Для оценки тяжести гингивита (а в последующем и ре­гистрации динамики процесса) используют папиллярно-маргинально-альвеолярный индекс (РМА)...

Вопрос. Отличие деятельности человека от поведения животных главные отличия деятельности человека от активности животных сводятся к следующему: 1...

Расчет концентрации титрованных растворов с помощью поправочного коэффициента При выполнении серийных анализов ГОСТ или ведомственная инструкция обычно предусматривают применение раствора заданной концентрации или заданного титра...

Психолого-педагогическая характеристика студенческой группы   Характеристика группы составляется по 407 группе очного отделения зооинженерного факультета, бакалавриата по направлению «Биология» РГАУ-МСХА имени К...

Studopedia.info - Студопедия - 2014-2024 год . (0.012 сек.) русская версия | украинская версия