Студопедия — Как влияет повышение уровня адреналина на организм
Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Как влияет повышение уровня адреналина на организм






· Сердечные сокращения усиливаются и становятся более частыми (увеличение ЧСС - частоты сердечных сокращений).

· Зрачки расширяются, острота зрения увеличивается.

· Сосуды сужаются, и отток крови к внутренним органам уменьшается. Именно поэтому человек в стрессовой ситуации (при сильном испуге) бледнеет, а его руки становятся холодными. При этом увеличивается поступление крови к мышцам скелета - это нужно для того, чтобы в случае необходимости, человек спас свою жизнь бегством или смог отразить атаку противника.

· Потоотделение усиливается. Возможно возникновение временного нарушения терморегуляции - человека начинает поочередно бросать то в жар, то в холод.

· Легкие начинают работать в «усиленном» режиме, что позволяет организму получить максимальное количество кислорода.

· Уровень глюкозы в крови возрастает, поэтому мозг начинает более эффективно снабжаться энергией, мыслительные процессы ускоряются, а внимание становится максимально сосредоточенным.

Во время массивного выброса адреналина в кровь, человек способен на такие поступки, которых от него сложно было бы ожидать в спокойном состоянии - например, совершить подвиг. Но действие мощного адреналинового выброса (адреналинового удара) кратковременно и длится не более пары минут - именно это время отводится нам на то, чтобы справиться с опасной ситуацией. Затем организм выходит из режима «супер-человека», поэтому человек начинает испытывать слабость и, скорее всего, его начнет неконтролируемого трясти (возникает дрожь).

 

№146

 

Надпочечник: корковое вещество, гормоны и их значение. Понятие о неспецифическом адаптационном синдроме.

 

Корковое вещество надпочечников состоит из трех зон: поверхностная -

клубочковая зона, средняя - пучковая зона и внутренняя - сетчатая зона. Клубочковая зона коры, состоящая из клеток цилиндрической формы с хорошо развитым агранулярным ретикулумом и трубчатыми митохондриями, синтезирует минералокортикоиды, главнейшим среди них является альдостерон, повышающий чувствительность клеток плотного пятна в дистальных извитых канальцах почки, усиливает (контролирует) реабсорбцию ионов Na+, C1- и бикарбонатов, увеличивает экскрецию калия. Минералокортикоиды усиливают воспалительный процесс и являются жизненно необходимыми гормонами. Промежуточная зона коры - камбий для клеток клубочковой и нижележащих пучковой и сетчатой зон. Пучковая зона наиболее развита (78% от массы коры), состоит из клеток, содержащих многочисленные липидные капли с триглицеридами, фосфолипидами и холестерином, а также включения с витамином С. Клетки секретируют глюкокортикоидные гормоны: кортикостерон, кортизон и кортизол, которые прямо или опосредованно регулируют практически все физиологические и биохимические процессы, являются адаптивными и противовоспалительными факторами. Сетчатая зона - наиболее старый отдел коры надпочечника, в котором жизненный цикл клеток завершается апоптозом. Клетки этой зоны синтезируют мужские и в меньшей степени женские половые гормоны: 2/3 тестостерона в женском организме образуется в сетчатой зоне. Х-зона - фетальная кора. Развита преимущественно у грызунов.

Ведущую роль в этих неспецифических реакциях играют катехоламины и глюкокортикоиды, в значительных количествах мобилизуемые в кровь. Активируя катаболические процессы, эти гормоны ведут к гипергликемии — одной из начальных реакций субстратного энергообеспечения. Чрезмерные, часто повреждающие воздействия среды, раздражая рецепторы, вызывают мощный поток афферентных импульсов в центральную нервную систему, что ведет к активации гипоталамических центров. Быстрым следствием этих процессов является симпатическая активация и поступление в кровь из надпочечников катехоламинов, что вызывает срочные адаптивные реакции. Одновременно возрастает нейросекреция кортиколиберина, обусловливающая повышение активности гипоталамо-аденогипофизарно-надпочечниковой оси регуляции, способствующей реализации компенсаторных реакций за счет активации их энергообеспечения.

 

№145

 

Паращитовидная железа. Строение, гормоны и функции.

Околощитовидные железы (обычно в количестве четырех) расположены на задней поверхности щитовидной железы и отделены от нее капсулой.

Функциональное значение околощитовидных желез заключается в регуляции метаболизма кальция. Они вырабатывают белковый гормон паратирин, или паратгормон, который стимулирует резорбцию кости остеокластами, повышая уровень кальция в крови. Сами остеокласты не имеют рецепторов к паратгормону, - его действие опосредовано другими клетками костной ткани - остеобластами.

Кроме этого паратгормон уменьшает выведение кальция почками, а также усиливает синтез метаболита витамина D, который, в свою очередь, повышает всасывание кальция в кишечнике.

Развитие. Околощитовидные железы закладываются у зародыша как выступы из эпителия III-ей и IV-ой пар жаберных карманов глоточной кишки. Эти выступы отшнуровываются, и каждый из них развивается в отдельную околощитовидную железу, причем из IV пары жаберных карманов развивается верхняя пара желез, а из III пары развивается нижняя пара околощитовидных желез, а также вилочковая железа - тимус.

Строение околощитовидной железы. Каждая околощитовидная железа окружена тонкой соединительнотканной капсулой. Ее паренхима представлена трабекулами - эпителиальными тяжами эндокринных клеток - паратироцитов. Трабекулы разделены тонкими прослойками рыхлой соединительной ткани с многочисленными капиллярами. Хотя между паратироцитами хорошо развиты межклеточные щели, соседние клетки связаны интердигитациями и десмосомами. Различают два типа клеток: главные паратироциты и оксифильные паратироциты.

Главные клетки секретируют паратирин, они преобладают в паренхиме железы, имеют небольшие размеры и полигональную форму. В периферических зонах цитоплазма базофильна, где рассеяны скопления свободных рибосом и секреторные гранулы. При усилении секреторной активности паращитовидных желез главные клетки увеличиваются в объеме. Среди главных паратироцитов также различают два типа: светлые и темные. В цитоплазме светлых клеток встречаются включения гликогена. Считают, что светлые клетки - это неактивные, а темные клетки - функционально активные паратироциты. Главные клетки осуществляют биосинтез и выделение паратгормона.

Второй тип клеток - оксифильные паратироциты. Они малочисленны, располагаются поодиночке или группами. Они значительно крупнее, чем главные паратироциты. В цитоплазме видны оксифильные гранулы, огромное количество митохондрий при слабом развитии других органелл. Их рассматривают как стареющие формы главных клеток. У детей эти клетки единичны, с возрастом их число возрастает.

На секреторную активность околощитовидных желез не оказывают влияния гипофизарные гормоны. Околощитовидная железа по принципу обратной связи быстро реагирует на малейшие колебания в уровне кальция в крови. Ее деятельность усиливается при гипокальциемии и ослабляется при гиперкальциемии. Паратироциты обладают рецепторами, способными непосредственно воспринимать прямые влияния ионов кальция на них.

Иннервация. Околощитовидные железы получают обильную симпатическую и парасимпатическую иннервацию. Безмиелиновые волокна заканчиваются терминалями в виде пуговок или колечек между паратироцитами. Вокруг оксифильных клеток нервные терминали принимают вид корзиночек. Встречаются также инкапсулированные рецепторы. Влияние поступающих нервных импульсов ограничивается сосудодвигательными эффектами.

Возрастные изменения. У новорожденных и детей младшего возраста в паренхиме околощитовидных желез обнаруживаются только главные клетки. Оксифильные клетки появляются не ранее 5-7 лет, к этому времени их количество быстро нарастает. После 20-25 лет постепенно прогрессирует накопление жировых клеток.

 

 

№144

 

Щитовидная железа. Гормоны.

Щитовидная железа самая крупная из эндокринных желез организма; располагается по бокам трахеи, вырабатывает йодсодержащие тиреоидные гормоны: тироксин (Т4), 3,5,3-трийодтиронин (Т3), кальцитонин. Развивается из клеточного материала дна глотки между I и II парами глоточных карманов. Медиальный зачаток имеет дольчатое строение, смещается в каудальном направлении, утрачивает связь с эмбриональной глоткой. Эпителий, образующий основную массу щитовидной железы, является дериватом прехордальной пластинки. В эпителиальную закладку органа врастают соединительная ткань и сосуды. С 11-12-й недели появляется характерная способность накапливать йод и синтезировать тиреоидные гормоны. Щитовидная железа снаружи покрыта соединительнотканной капсулой, прослойки которой направляются вглубь и делят орган на дольки. В этих прослойках проходят кровеносные и лимфатические сосуды, нервы. Паренхима железы представлена эпителиальной тканью, которая образует структурно-функциональную единицу - фолликул.

 

 

№143

 

Щитовидная железа. Клеточный состав фолликула щитовидной железы.

 

Фолликулы - замкнутые пузырьки, стенки которых состоят из фолликулярных и парафолликулярных клеток, в просвете содержится коллоид. Коллоид представляет собой вязкую жидкость, в состав которой входит тиреоглобулин, предшественник гормонов тироксина и трийодтиронина. Фолликулярные клетки - тироциты, лежат в один слой. В зависимости от функционального состояния железы тироциты имеют разную форму - от цилиндрической до плоской. При нормофункции клетки кубической формы. При гипофункции тироциты уплощаются, фолликулы увеличиваются в размере за счет большого объема коллоида. При гиперфункции тироциты приобретают цилиндрическую форму, а количество коллоида резко уменьшается. На апикальной поверхности тироцитов, обращенной в просвет фолликула, имеются микроворсинки, на базальной - инвагинации плазмолеммы. Складки и ворсинки свидетельствуют о высокой транспортной активности клеток. Соседние тироциты связаны плотными контактами, десмосомами, которые препятствуют попаданию коллоида в межклеточное пространство. Парафолликулярные С-клетки располагаются в стенке фолликула, между тироцитами. Характерным признаком этих клеток является присутствие в их цитоплазме большого количества гранул диаметром 100-300 нм, покрытых мембраной. Основная функция С-клеток - секреция кальцитонина. Гормон накапливается в цитоплазме в секреторных гранулах и посредством экзоцитоза выделяется в периваскулярное пространство. Помимо кальцитонина С-клетки синтезируют соматостатин и ряд других гормонов. Кроме фолликулов в паренхиме железы находятся интерфолликулярные островки - скопления тироцитов, по своему строению идентичных фолликулярным тироцитам. При функциональной нагрузке на щитовидную железу эти клетки начинают вырабатывать коллоид и островки превращаются в фолликул. Оксифилъные клетки Асканази (Гюртле) - крупные кубические, цилиндрические или полигональные клетки с оксифильной мелкозернистой цитоплазмой и эксцентрично лежащим ядром неправильной формы. Они часто располагаются группами, иногда образуют мелкие фолликулы с небольшим количеством коллоида. Их особенность - очень большое число лизосом и митохондрий вариабельной формы с хорошо развитыми кристами. Происхождение и функциональная роль этих клеток остаются нераскрытыми. Считается, что клетки Асканази служат источником образования доброкачественных и злокачественных опухолей щитовидной железы.

Функция фолликулярных тироцитов - синтез, накопление, выделение тиреоидных гормонов (Т3, Т4). Эти процессы включают ряд этапов: 1. Фаза продукции. Тироциты поглощают из крови тирозин, аминокислоты, моносахариды, йодид, которые накапливаются на гранулярной эндоплазматической сети. После этого здесь синтезируется полипептидная цепь, поступающая затем в комплекс Гольджи, где к ней присоединяются углеводные компоненты и образуется белок тиреоглобулин. От комплекса Гольджи отделяются пузырьки с тиреоглобулином и посредством экзоцитоза через апикальную поверхность тироцитов выделяются в просвет фолликула. 2. Фаза выведения. Обратное поглощение (пиноцитоз) тиреоглобулина тироцитами из коллоида, слияние пиноцитозных пузырьков с лизосомами, расщепление тиреоглобулина лизосомальными ферментами, освобождение гормона тироксина и трийодтиронина и, наконец, выделение свободных гормонов в капилляры.

Тиреоглобулин в норме никогда не попадает из просвета фолликула в межклеточное пространство. Его появление там приводит к аутоиммунному поражению щитовидной железы, т.к. в процессе внутриутробного развития иммунная система не вступала в контакт с тиреоглобулином, который первоначально отсутствовал и в дальнейшем был полностью изолирован, из-за иммунная система воспринимает его как чужеродный антиген.

 

 

№142

 

Эпифиз, строение, гормоны.

 

Эпифиз - верхний придаток головного мозга, или шишковидное тело (corpus pineale), участвует в регуляции циклических процессов в организме.

Эпифиз развивается как выпячивание крыши III желудочка промежуточного мозга. Максимального развития эпифиз достигает у детей до 7 лет.

Строение эпифиза. Снаружи эпифиз окружен тонкой соединительнотканной капсулой, от которой отходят разветвляющиеся перегородки внутрь железы, образующие ее строму и разделяющие ее паренхиму на дольки. У взрослых в строме выявляются плотные слоистые образования - эпифизарные конкреции, или мозговой песок.

В паренхиме различают клетки двух типов - секретообразующие пинеалоциты и поддерживающие глиальные, или интерстициальные клетки. Пинеалоциты располагаются в центральной части долек. Они несколько крупнее опорных нейроглиальных клеток. От тела пинеалоцита отходят длинные отростки, ветвящиеся наподобие дендритов, которые переплетаются с отростками глиальных клеток. Отростки пинеалоцитов направляются к фенестрированным капиллярам и контактируют с ними. Среди пинеалоцитов различают светлые и темные клетки.

Глиальные клетки преобладают на периферии долек. Их отростки направляются к междольковым соединительнотканным перегородкам, образуя своего рода краевую кайму дольки. Эти клетки выполняют, в основном, опорную функцию.

Гормоны эпифиза:

Мелатонин - гормон фотопериодичности, - выделяется преимущественно ночью, т.к. его выделение угнетается импульсами, поступающими из сетчатки глаза. Мелатонин синтезируется пинеалоцитами из серотонина, он угнетает секрецию гонадолиберина гипоталамусом и гонадотропинов передней доли гипофиза. При нарушении функции эпифиза в детском возрасте наблюдается преждевременное половое созревание.

Кроме мелатонина ингибирующее влияние на половые функции обусловливается и другими гормонами эпифиза - аргинин-вазотоцином, антигонадотропином.

Адреногломерулотропин эпифиза стимулирует образование альдостерона в надпочечниках.

Пинеалоциты продуцируют несколько десятков регуляторных пептидов. Из них наиболее важны аргинин-вазотоцин, тиролиберин, люлиберин и даже тиротропин.

Образование олигопептидных гормонов совместно с нейроаминами (серотонин и мелатонин) демонстрирует принадлежность пинеалоцитов эпифиза к APUD-системе.

У человека эпифиз достигает максимального развития к 5-6 годам жизни, после чего, несмотря на продолжающееся функционирование, начинается его возрастная инволюция. Некоторое количество пинеалоцитов претерпевает атрофию, а строма разрастается, и в ней увеличивается отложение конкреций - фосфатных и карбонатных солей в виде слоистых шариков - т.н. мозговой песок.

 

 

№141

 

Нейрогипофиз и понятие о нейрогемальных органах

 

Аксоны нейросекреторных клеток этих двух ядер образуют гипоталамо-нейрогипофизарный тракт. Нейрогормоны ядер с аксональным током доставляются к капиллярам задней доли гипофиза, который является нейрогемальным органом. В среднем гипоталамусе выделяют аркуатный комплекс, к которому относят инфундибулярные, дорзомедиальное и вентромедиальное ядра. Клетки этого комплекса секретируют рилизинг-факторы - либерины и статины, регулирующие функцию тропоцитов передней доли гипофиза. Аксоны нейронов этих ядер оканчиваются на стенках капилляров среднего возвышения, куда с аксональным током поступают либерины и статины. Следовательно, срединное возвышение - нейрогемальный орган. По воротной системе, состоящей из венозных капилляров среднего возвышения и венозных капилляров аденогипофиза, соединенных венами, гормоны транспортируются к тропоцитам. Таким образом, формирующаяся гипоталамо-аденогипофизарная воротная система оказывает влияние на периферические гипофизозависимые железы внутренней секреции.

В нейрогипофизе различают заднюю долю, стебель и воронку. Нейрогипофиз образуется как выпячивание промежуточного мозга, т.е. имеет нейроэктодермальное происхождение. Клетки задней доли не вырабатывают гормонов, они депонируют окситоцин и вазопрессин в тельцах Геринга на стенках гемокапилляров. Каждое тельце - это терминаль аксона нейронов супраоптического и паравентрикулярного ядер.

 

 

№140

 

Аденогипофиз. Клетки и гормоны передней доли гипофиза.

 

Аденогипофиз (передняя доля) содержит три основных клеточных клона: 1) хромофобных питуицитов, 2) оксифильных и 3) базофильных питуицитов. Хромофобные клетки (60%) обеспечивают физиологическую регенерацию (камбий) железы. Оксифильные делятся на соматотропоциты и маммотропоциты, выделяющие соответственно гормон роста (соматотропин) и пролактин, стимулирующий развитие молочных желез, лактацию и участвующий в овариальном цикле. Базофилы гипофиза - тиреотропоциты и гонадотропоциты. Первые усиливают активность клеток щитовидной железы, ускоряя все стадии синтеза тироксина и трийодтиронина. Гонадотропоциты выделяют лютеотропный и фолликулостимулирующий гормоны, регулирующие соответственно лютеиногенез и фолликулогенез овариально-менструального цикла. Адренокортикотропоциты не относят ни к базофилам, ни оксифилам аденогипофиза. Олигопептиды адренокортикотропного гормона усиливают стероидогенез в пучковой и сетчатой доли надпочечника. В промежуточной доле аденогипофиза сек-ретируются меланоцитотропин, регулирующий функцию меланоцитов и других пигментных клеток, и липотропин, участвующий в регуляции липидного обмена.

 

 

№139

 

Нейросекреторные ядра гипоталамуса, их гормоны и значение. Гипоталамо-нейрогипофизарная и гипоталамо- аденогипофизарная система.

 

Гипоталамус - высший нервный центр регуляции эндокринных функций. Этот участок промежуточного мозга является также центром симпатического и парасимпатического отделов вегетативной нервной системы. Он контролирует и интегрирует все висцеральные функции организма и объединяет эндокринные механизмы регуляции с нервными. Нервные клетки гипоталамуса, синтезирующие и выделяющие в кровь гормоны, называются нейросекреторными клетками. Эти клетки получают афферентные нервные импульсы из других частей нервной системы, а их аксоны оканчиваются на кровеносных сосудах, образуя аксо-вазальные синапсы, через которые и выделяются гормоны.

Для нейросекреторных клеток характерно наличие гранул нейросекрета, которые транспортируются по аксону. Местами нейросекрет накапливается в большом количестве, растягивая аксон. Самые крупные из таких участков хорошо видны при световой микроскопии и называются тельцами Херринга. В них сосредоточена большая часть нейросекрета, - лишь около 30% его находится в области терминалей.

В гипоталамусе условно выделяют передний, средний и задний отделы.

В переднем гипоталамусе располагаются парные супраоптические и паравентрикулярные ядра, образованные крупными холинергическими нейросекреторными клетками. В нейронах этих ядер продуцируются белковые нейрогормоны - вазопрессин, или антидиуретический гормон, и окситоцин. У человека выработка антидиуретического гормона совершается преимущественно в супраоптическом ядре, тогда как продукция окситоцина преобладает в паравентрикулярных ядрах.

Вазопрессин вызывает усиление тонуса гладкомышечных клеток артериол, приводящее к повышению артериального давление. Второе название вазопрессина -антидиуретический гормон (АДГ). Воздействуя на почки, он обеспечивает обратное всасывание жидкости, отфильтрованной в первичную мочу из крови.

Окситоцин вызывает сокращения мышечной оболочки матки во время родов, а также сокращение миоэпителиальных клеток молочной железы.

В среднем гипоталамусе располагаются нейросекреторные ядра, содержащие мелкие адренергические нейроны, которые вырабатывают аденогипофизотропные нейрогормоны - либерины и статины. С помощью этих олигопептидных гормонов гипоталамус контролирует гормонообразовательную деятельность аденогипофиза. Либерины стимулируют выделение и продукцию гормонов передней и средней долей гипофиза. Статины угнетают функции аденогипофиза.

Нейросекреторная деятельность гипоталамуса испытывает влияние высших отделов головного мозга, особенно лимбической системы, миндалевидных ядер, гиппокампа и эпифиза. На нейросекреторные функции гипоталамуса сильно влияют также некоторые гормоны, особенно эндорфины и энкефалины.

В переднем отделе гипоталамуса располагается паравентрикулярное и супраоптическое ядра. Их крупные холинергические нейроциты в аксонах и цитоплазме содержат гранулы (100-200 нм) нейросекрета окситоцина и вазопрессина. Мишенью для действия окситоцина являются гладкие миоциты матки и миоэпителиальные клетки молочной железы. Вазопрессин регулирует факультативную реабсорбцию в дистальных извитых канальцах почки и повышает тонус лейомиоцитов артериол. Аксоны нейросекреторных клеток этих двух ядер образуют гипоталамо-нейрогипофизарный тракт. Ней-рогормоны ядер с аксональным током доставляются к капиллярам задней доли гипофиза, который является нейрогемальным органом.

В среднем гипоталамусе выделяют аркуатный комплекс, к которому относят инфундибулярные, дорзомедиальное и вентромедиальное ядра. Клетки этого комплекса секретируют рилизинг-факторы - либерины и статины, регулирующие функцию тропоцитов передней доли гипофиза. Аксоны нейронов этих ядер оканчиваются на стенках капилляров среднего возвышения, куда с аксональным током поступают либерины и статины. Следовательно, срединное возвышение - нейрогемальный орган. По воротной системе, состоящей из венозных капилляров среднего возвышения и венозных капилляров аденогипофиза, соединенных венами, гормоны транспортируются к тропоцитам. Таким образом, формирующаяся гипоталамо-аденогипофизарная воротная система оказывает влияние на периферические гипофизозависимые железы внутренней секреции.

 

 

№138

 

Общая характеристика и структурно-функциональная организация эндокринной системы.

Эндокринная система совместно с нервной и иммунной интегрирует функции организма, обеспечивая его целостность. Главными элементами эндокринной системы являются высокоспециализированные клетки - эндокриноциты, инкретирующие гормоны. Гормоны - это биологически активные вещества, регулирующие одну или несколько важных или жизненно важных функций организма. Они выделяются в кровь, лимфу или межтканевую жидкость, оказывая аутокринное, паракринное и дистантное действие на плазмолемму клеток того органа, где имеются соответствующие белки-рецепторы. Таким образом, гормоны адресно изменяют функцию органов-мишеней.

Эндокринная система имеет многоуровневую организацию. Ее высшим уровнем является гипоталамус, секретирующий пусковые гормоны - рилизинг-факторы. Вторым уровнем считаются мозговые придатки: гипофиз и эпифиз, секретирующие тройные гормоны и контролирующие функцию периферических желез внутренней секреции. Третий уровень - это периферические эндокринные железы, гормоны которых действуют на исполнительные органы. Имеются две группы желез: гипофизозави-симые (половые железы, пучковая и сетчатая зона надпочечника, щито-иидная железа) и гипофизонезависимые (паращитовидная железа, клубочковая и мозговая зона надпочечника, островки Лангерганса, плацента). Четвертым уровнем организации эндокринной системы считаются одиночные самостоятельные эндокриноциты: апудоциты нейрогенного происхождения (эндокринные клетки гастроэнтеральной системы) и клетки местного источника развития, вырабатывающие олигопептиды - Д, Д1, секреторные кардиомиоциты. Пятый уровень - это эффекторные исполнительные клетки-мишени, функцию которых организует соответствующий гормон.

 

 

№137

 

Сосудистая система печени, значение воротной вены и печёночной артерии.

 

Кровеносная система печени тесно связана с ее строением. Особенностью кровоснабжения печени является то, что она получает кровь из двух сосудов, входящих в ее ворота. Это воротная вена и печеночная артерия. Воротная вена собирает кровь от всех непарных органов брюшной полости и приносит в печень вещества, всосавшихся в кишечнике и необходимы для его жизнедеятельности. Печеночная артерия несет от аорты кровь, богатую кислородом. Эти два сосуда расположены рядом и разветвляются на мелкие сосуды: долевые, сегментарные, междольковые, вены и артерии. Междольковые артерии и вены сопровождаются желчными протоками и образующие так называемые печеночные триады. Наряду с ними проходят также нервные волокна и лимфатические сосуды.
Междольковые вены и артерии идут вдоль боковых граней частиц, а вокругдольковые, отходящих от них, опоясывающих частицы на разных уровнях. Междольковые и вокругдольковые вены являются сосудами со слаборазвитой мышечной оболочкой, и только в местах разветвлений в стенке этих сосудов является скопление мышечных клеток, которые образуют сфинктеры. Соответствующие им артерии относятся к сосудам мышечного типа. Артерии преимущественно в несколько раз меньше по диаметру, чем соответствующие им вены.
От вокругдольковых вен и артерий внутрь долек врастают входящие артериолы и венулы, которые на периферии долек сливаются, образуя синусоидальные капилляры, по которым течет смешанная кровь в направлении от периферии к центру частиц. Синусоидальные капилляры проходят между тяжами печеночных клеток - печеночными пластинками, в радиальном направлении и сливаются в центральную вену, которая расположена в центре печеночной дольки.
Кровь из частиц бросается в сборные вены. Сборные вены, подобно междольковым, размещенны между частицами, но не сопровождаются артериями и желчными протоками. По этому признаку они отличаются от междольковых вен. Центральные и сборные вены - сосуды безмышечного типа. Сборные вены, сливаясь, образуют притоки печеночных вен, которые в количестве трех-четырех выходят из печени и впадают в нижнюю полую вену. Притоки печеночных вен имеют хорошо развитые сфинктеры, с помощью которых регулируется отток крови от частиц и печени в целом.

 

 

№136

 

Синусоидные капилляры печени. Пространство Диссе и его значение. Клетки Ито.

Пространство Диссе располагается между печеночными балками и стенкой синусоидных капилляров: содержит липоциты (клетки Ито), фибробласты, отростки клеток Купфера, перициты, ямочные клетки, мастоциты. Синусоидальные гемокапиляры в печени расположенные между двумя венозными системами - воротной вены (навколочасточкови вены) и печеночных вен (центральные вены). Совокупность синусоидальных капилляров называют чудесной венозной капиллярной сеткой печени. Вследствие того что печень содержит большое количество гемокапилляр с широким диаметром, кровь течет в дольках очень медленно. Это способствует осуществлению обменных процессов между кровью и клетками печени. Кроме того, в сосудах печени может депонироваться значительная масса крови. Синусоидальные капилляры имеют диаметр до30мкм и не сплошную базальную мембрану. Они проходят между тяжами печеночных клеток - печеночными пластинками, в радиальном направлении и сливаются в центральную вену, которая расположена в центре печеночной дольки.

 

 

№135

 

Печеночная балка, характеристика гепатоцитов, особенности организации.

 

Печеночная клетка — гепатоцит — имеет полигональную форму и размер от 12 до 40 мк в диаметре в зависимости от функционального состояния. В гепатоците выделяют синусоидальный и билиарный полюсы. Через первый происходит всасывание различных веществ из крови, через второй — секреция желчи и других субстанций в просветы межклеточных желчных канальцев. Абсорбирующая и секреторная поверхности гепатоцита снабжены огромным количеством ультрамикроскопических выростов — микроворсинок, увеличивающих эти поверхности.
Гепатоцит ограничен двухконтурной белково-липидной плазматической мембраной, обладающей высокой ферментативной активностью—фосфатазной на билиарном полюсе и нуклеозидфосфатазной — на синусоидальном. Плазматическая мембрана гепатоцита содержит и фермент транслоказу, катализирующую активный транспорт ионов и молекул в клетку и из нее. Цитоплазма гепатоцита представлена мелкозернистым матриксом с небольшой электронной плотностью и системой мембран, которые составляют одно целое с плазматической и ядерной оболочками. Последняя также двухконтурна, состоит из белков и липидов и окружает шаровидное ядро с 1 — 2 ядрышками. В ядерной оболочке имеются поры диаметром 300—500 А. Некоторые гепатоциты (с возрастом их становится больше) имеют по два ядра. Двуядерные клетки, как правило, полиплоидны. Митозы встречаются редко.
К органеллам гепатоцита относятся эндоплазматическая сеть (гранулярная и агранулярная), митохондрии и аппарат (комплекс) Гольджи. Гранулярная эндоплазматическая сеть (эргастоплазма) построена из парных параллельных липопротеиновых мембран, ограничивающих ультрамикроскопические канальцы. На наружной поверхности этих мембран располагаются рибосомы — рибонуклеопротеиновые гранулы диаметром 100—150 А. Агранулярная эндоплазматическая сеть построена так же, но рибосом не имеет.
Митохондрии в числе 2000—2500 встречаются в виде нитей, палочек и зерен величиной 0,5—1,5 мк и расположены около ядра и по периферии клетки. Митохондрии гепатоцита содержат огромное количество ферментов и являются энергетическими центрами клетки. Ультрамикроскопически — митохондрии сложные липопротеиновые мембранные структуры, осуществляющие ферментативные превращения трикарбоновых кислот, сопряжение потока электронов с синтезом АТФ, перенос активных ионов во внутренние пространства митохондрий, а также синтез фосфолипидов и жирных кислот с длинной цепью.
Аппарат Гольджи представлен сетью перекладин разной толщины, которые располагаются в разные фазы секреторного цикла гепатоцита около ядра или вблизи желчных канальцев. Ультрамикроскопически он состоит из агранулярных липопротеиновых мембран, образующих трубочки, пузырьки, мешочки и щели. Аппарат Гольджи богат нуклеозидфосфатазами и другими ферментами.
Лизосомы — перибилиарные тельца — пузырьки диаметром 0,4 мк и меньше, ограниченные одноконтурными мембранами, расположены около просветов желчных канальцев. Они содержат гидролазы и особенно богаты кислой фосфатазой. Непостоянные включения (гликоген, жир, пигменты, витамины) по своему составу и количеству варьируют. Эндогенные пигменты—это гемосидерин, липофусцин, билирубин. Экзогенные пигменты могут присутствовать в цитоплазме гепатоцитов в виде солей различных металлов.

Печеночные балки состоят из гепатоцитов, связанных друг с другом десмосомами по типу «замка». Балки анастомозируют между собой, и поэтому их радиальное направление в дольках не всегда четко заметно. В печеночных балках и анатомозах между ними гепатоциты располагаются 2 рядами, тесно прилегающими друг к другу. В связи с этим на поперечном срезе каждая балка представляется состоящей из 2-х клеток. По аналогии с другими с другими железами печеночные балки можно считать концевыми отделами печени, так как образующие их гепатоциты секретируют глюкозу, белки крови и ряд других веществ.

 

№134

 

Структура печени: долька, печеночный ацинус, портальная долька, функции печени.

печеночная долька - шестигранная призма, через центр которой проходит центральная вена, собирающая кровь из синусоидных капилляров. Рядом с долькой располагается тетрада (портальный тракт), которая состоит из междолькой артерии (ветвь печеночной артерии большого круга кровообращения), междольковой вены (ветвь воротной вены), междолькового желчного протока (в который оттекает желчь из желчных капилляров дольки) и междолькового лимфатического сосуда. В связи с незначительным количеством соединительной ткани в печени человека образуются сложные дольки, в которых гепатоциты в составе печеночных трабекул, не прерываясь, переходят из одной дольки в другую.

Портальная печеночная долька включает сегменты 3-х соседних классических печеночных долек, окружающих триаду. Поэтому она имеет треугольную форму, в ее центре лежит триада, а на периферии, т е по углам, - вены (центральные). В связи с этим в портальной дольке кровоток по кровеносным капиллярам направлен от центра к периферии.

Печеночный ацинус образован сегментами 2-х рядом расположенных классических долек, благодаря чему имеет форму ромба. У острых его углов проходят вены (центральные), а у тупого угла – триада, от которой внутрь ацинуса идут ее ветви (вокругдольковые). От этих ветвей к венам (центральным) направляются гемокапилляры. Таким образом, в ацинусе, также как и в портальной дольке, кровоснабжение осуществляется от его центральных участков к периферическим.

функции: 1)метаболическая - синтез белков крови (альбумин, глобулин), факторов свертывания крови (фибриноген, протромбин), хс лестерина; 2) защитная - химическая защита от вредных веществ (де-токсикация) осуществляется при помощи гладкой эндоплазматической сети; клеточный вид защиты выполняют печеночные макрофаги - клетки Купфера; 3) депонирующая - образование и накопление гликогена (в основном в ночное время), депонирование ряда витаминов (A, D, С, К, РР); 4) экскреторная - образование желчи и выведение ее в 12-перстную кишку; 5) гемопоэтическая - протекает в период внутриутробного развития, на 5-6-й неделе экстраваскулярно возникают очаги эритропоэза, гранулоцитопоэза, мегакариоцитопоэза.

 

№133

 

Общая характеристика поджелудочной железы: эндокринный отдел, типы эндокриноцитов, их гормоны и значение

Поджелудочная железа. В поджелудочной железе различают головку, тело и хвост. Железа покрыта тонкой прозрачной соединительнотканной капсулой, от которой в глубь паренхимы отходят многочисленные междольковые перегородки, состоящие из рыхлой соединительной ткани. В них проходят междольковые выводные протоки, нервы, кровеносные и лимфатические сосуды. Таким образом, поджелудочная железа имеет дольчатое строение.

Поджелудочная железа состоит из экзокринного отдела (97% ее массы) и







Дата добавления: 2015-12-04; просмотров: 168. Нарушение авторских прав; Мы поможем в написании вашей работы!



Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...

Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...

Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...

Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...

Измерение следующих дефектов: ползун, выщербина, неравномерный прокат, равномерный прокат, кольцевая выработка, откол обода колеса, тонкий гребень, протёртость средней части оси Величину проката определяют с помощью вертикального движка 2 сухаря 3 шаблона 1 по кругу катания...

Неисправности автосцепки, с которыми запрещается постановка вагонов в поезд. Причины саморасцепов ЗАПРЕЩАЕТСЯ: постановка в поезда и следование в них вагонов, у которых автосцепное устройство имеет хотя бы одну из следующих неисправностей: - трещину в корпусе автосцепки, излом деталей механизма...

Понятие метода в психологии. Классификация методов психологии и их характеристика Метод – это путь, способ познания, посредством которого познается предмет науки (С...

Классификация холодных блюд и закусок. Урок №2 Тема: Холодные блюда и закуски. Значение холодных блюд и закусок. Классификация холодных блюд и закусок. Кулинарная обработка продуктов...

ТЕРМОДИНАМИКА БИОЛОГИЧЕСКИХ СИСТЕМ. 1. Особенности термодинамического метода изучения биологических систем. Основные понятия термодинамики. Термодинамикой называется раздел физики...

Травматическая окклюзия и ее клинические признаки При пародонтите и парадонтозе резистентность тканей пародонта падает...

Studopedia.info - Студопедия - 2014-2024 год . (0.011 сек.) русская версия | украинская версия