Студопедия — В случае третьей системы - распределение среднего геометрического логарифмов отдельных случайных величин
Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

В случае третьей системы - распределение среднего геометрического логарифмов отдельных случайных величин






с ростом n приближается к логарифмически нормальному закону, а величина

- к двойному логарифмически нормальному закону.

При n > 100 распределение среднего выборочного (или , или ) можно считать нормальным.

Действительно, если распределение случайной величины Х (или , или ) характеризуется показателями (в случае трех основных систем непрерывных распределений), то распределение среднего арифметического n = 100 независимых одинаково распределенных случайных величин на основании формул (7.4.34) будет иметь показатели

, (7.4.46)

т.е. близкие к нормальному закону.

Отметим, что формулы (7.4.34) и (7.4.44) позволяют переходить от распределения среднего арифметического n независимых одинаково распределенных случайных величин к распределению отдельной случайной величины.

Полученные результаты вскрывают характер изменения показателей с изменением числа n независимых одинаково распределенных случайных величин: с ростом n точка с координатами () приближается к точке (0; 3) по кратчайшему пути, т.е. по прямой

, (7.4.47)

которая следует из (7.4.34).

При этом степень приближения к нормальному закону при больших n зависит от исходных значений показателей случайной величины Хi.

Установим минимально необходимое значение n, при котором распределение среднего арифметического n независимых одинаково распределенных случайных величин можно считать нормальным.

Рассмотрим рис. 7.4.2. На нем точкой А () обозначено распределение случайной величины Хi.

Распределение среднего арифметического n независимых одинаково распределенных случайных величин представлено точкой В ().

 
 

Заштрихованная площадь – это область нормального закона. Она ограничена двумя вертикальными и двумя наклонными отрезками прямых, тангенс угла наклона которых к горизонтальной оси принят равным 1,75. Область нормального закона может быть задана и другими способами.

 

Рис. 7.4.2. Фрагмент номограммы в области нормального закона

Если при некотором значении n точка В (или В ¢) попадает на границу или внутрь заштрихованной области, то закон распределения среднего арифметического можно считать нормальным.

Пусть точка В находится на правой вертикальной границе области нормального закона (см. рис. 7.4.2). При этом условии минимально необходимое значение n можно найти из формулы

при :

. (7.4.48)

Если точка В займет положение В ¢, то она будет являться точкой пересечения двух наклонных прямых, которые задаются уравнениями

; .

Приравнивая правые части этих уравнений, найдем

. (7.4.49)

Из двух полученных значений n выбираем большее.

Если в формулах (7.4.48), (7.4.49) принять , то значения параметра u выравнивающих распределений по абсолютной величине будут несколько меньше 0,02 (для нормального закона u →0).

Рассмотрим пример.

Пусть случайная величина Хi описывается распределением II¢ типа:

(7.4.50)

с параметрами: α = 12; k = 5. Тогда теоретические моменты будут равны (см. формулы (7.3.24), (7.3.27) при u →0, γ = k):

Показатели асимметрии и островершинности на основании (7.3.37) равны:

Найдем по формулам (7.4.48), (7.4.49) минимально необходимое значение n (объем выборки), при котором распределение среднего арифметического n независимых одинаково распределенных случайных величин можно считать нормальным.

При имеем:

.

Принимаем n = 420.

На практике часто ограничиваются небольшими значениями n .

Пусть n = 25. Тогда распределение среднего арифметического n независимых одинаково распределенных случайных величин будет иметь моменты (см. формулу 7.4.44):

Показатели асимметрии и островершинности равны:

Контроль:

.

Выравнивающее распределение среднего арифметического при n =25 может быть описано обобщенной плотностью

(точнее, распределением III типа первой системы непрерывных распределений) с параметрами

и нормирующим множителем N = 3,194777E–10.

Зададим доверительную вероятность P = 0,9973 и найдем по одной из программ (например, ) доверительный интервал для среднего арифметического: . Его ширина составляет .

Для сравнения по той же программе найдем доверительный интервал при условии справедливости нормального закона: . Его ширина составляет , т.е. ошибка в определении границ доверительного интервала по нормальному закону оказалась существенной.

Полученные выше формулы (7.4.48) и (7.4.49) можно использовать также для вычисления минимально необходимого значения n, при котором распределение среднего арифметического логарифмов n независимых одинаково распределенных случайных величин можно считать нормальным.

Используя универсальный метод моментов, для рассмотренной выше плотности II¢ типа с параметрами , приведенной к форме , найдем:

Показатели асимметрии и островершинности равны:

.

Далее по формулам (7.4.48) и (7.4.49) имеем (при )

.

Принимаем n = 5.

Итак, если случайная величина Х задана плотностью (7.4.50), то распределение среднего арифметического логарифма случайной величины Х близко к нормальному закону уже при n = 5, а распределение среднего арифметического самой случайной величины Х близко к нормальному закону при значительно большей величине n (n = 420).

Если же центральные моменты высоких порядков не существуют (например, ), то и величина , т.е. распределение среднего арифметического случайной величины Х ни при каком n не приближается к нормальному закону.

 







Дата добавления: 2015-12-04; просмотров: 176. Нарушение авторских прав; Мы поможем в написании вашей работы!



Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...

Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...

Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...

Примеры задач для самостоятельного решения. 1.Спрос и предложение на обеды в студенческой столовой описываются уравнениями: QD = 2400 – 100P; QS = 1000 + 250P   1.Спрос и предложение на обеды в студенческой столовой описываются уравнениями: QD = 2400 – 100P; QS = 1000 + 250P...

Дизартрии у детей Выделение клинических форм дизартрии у детей является в большой степени условным, так как у них крайне редко бывают локальные поражения мозга, с которыми связаны четко определенные синдромы двигательных нарушений...

Педагогическая структура процесса социализации Характеризуя социализацию как педагогический процессе, следует рассмотреть ее основные компоненты: цель, содержание, средства, функции субъекта и объекта...

Принципы и методы управления в таможенных органах Под принципами управления понимаются идеи, правила, основные положения и нормы поведения, которыми руководствуются общие, частные и организационно-технологические принципы...

ПРОФЕССИОНАЛЬНОЕ САМОВОСПИТАНИЕ И САМООБРАЗОВАНИЕ ПЕДАГОГА Воспитывать сегодня подрастающее поколение на со­временном уровне требований общества нельзя без по­стоянного обновления и обогащения своего профессио­нального педагогического потенциала...

Эффективность управления. Общие понятия о сущности и критериях эффективности. Эффективность управления – это экономическая категория, отражающая вклад управленческой деятельности в конечный результат работы организации...

Studopedia.info - Студопедия - 2014-2024 год . (0.009 сек.) русская версия | украинская версия