Студопедия — Гарвардская архитектура микропроцессорных систем;
Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Гарвардская архитектура микропроцессорных систем;






Главными отличительными чертами Гарвардской архитектуры организации памяти контроллера является:

– реализация в виде различных устройств памяти для программ и памяти для данных.

– использование двух параллельно работающих независимых шин для чтения данных и команд.

Замечание: Объем ПД как правило значительно меньше объема ПП.

 

В Гарвардской архитектуре принципиально различаются два вида памяти:

· Память программ

· Память данных

В Гарвардской архитектуре принципиально невозможно производить операцию записи в память программ, что исключает возможность случайного разрушения управляющей программы в случае неправильных действий над данными. Кроме того, в ряде случаев для памяти программ и памяти данных выделяются отдельные шины обмена данными. Эти особенности определили области применения этой архитектуры построения микропроцессоров. Гарвардская архитектура применяется в микроконтролерах, где требуется обеспечить высокую надёжность работы аппаратуры и в сигнальных процессорах, где эта архитектура кроме обеспечения высокой надёжности работы устройств позволяет обеспечить высокую скорость выполнения программы, за счёт одновременного считывания управляющих команд и обрабатываемых данных, а так же запись полученных результатов в память данных.

 

В настоящее время используются обе архитектуры памяти: Гарвардская в несложных восьми - разрядных контроллерах, Фон-Неймоновская в универсальных 16- разрядных и выше.

 

10. Блочная структура микропроцессорной системы, её достоинства и недостатки;

Характерная особенность традиционной цифровой системы состоит в том, что алгоритмы обработки и хранения информации в ней жестко связаны со схемотехникой системы. То есть изменение этих алгоритмов возможно только путем изменения структуры системы, замены электронных узлов, входящих в систему, и/или связей между ними. Например, если нам нужна дополнительная операция суммирования, то необходимо добавить в структуру системы лишний сумматор. Или если нужна дополнительная функция хранения кода в течение одного такта, то мы должны добавить в структуру еще один регистр. Естественно, это практически невозможно сделать в процессе эксплуатации, обязательно нужен новый производственный цикл проектирования, изготовления, отладки всей системы. Именно поэтому традиционная цифровая система часто называется системой на "жесткой логике".


Рис. 1.1. Электронная система.

Любая система на "жесткой логике" обязательно представляет собой специализированную систему, настроенную исключительно на одну задачу или (реже) на несколько близких, заранее известных задач. Это имеет свои бесспорные преимущества.

Во-первых, специализированная система (в отличие от универсальной) никогда не имеет аппаратурной избыточности, то есть каждый ее элемент обязательно работает в полную силу (конечно, если эта система грамотно спроектирована).

Во-вторых, именно специализированная система может обеспечить максимально высокое быстродействие, так как скорость выполнения алгоритмов обработки информации определяется в ней только быстродействием отдельных логических элементов и выбранной схемой путей прохождения информации. А именно логические элементы всегда обладают максимальным на данный момент быстродействием.

Но в то же время большим недостатком цифровой системы на "жесткой логике" является то, что для каждой новой задачи ее надо проектировать и изготавливать заново. Это процесс длительный, дорогостоящий, требующий высокой квалификации исполнителей. А если решаемая задача вдруг изменяется, то вся аппаратура должна быть полностью заменена. В нашем быстро меняющемся мире это довольно расточительно.

11. Шинная структура микропроцессорной системы, её достоинства и недостатки;

Для достижения максимальной универсальности и упрощения протоколов обмена информацией в микропроцессорных системах применяется так называемая шинная структура связей между отдельными устройствами, входящими в систему. Суть шинной структуры связей сводится к следующему.


Рис. 1.5. Классическая структура связей.

При классической структуре связей (рис. 1.5) все сигналы и коды между устройствами передаются по отдельным линиям связи. Каждое устройство, входящее в систему, передает свои сигналы и коды независимо от других устройств. При этом в системе получается очень много линий связи и разных протоколов обмена информацией.

При шинной структуре связей (рис. 1.6) все сигналы между устройствами передаются по одним и тем же линиям связи, но в разное время (это называется мультиплексированной передачей). Причем передача по всем линиям связи может осуществляться в обоих направлениях (так называемая двунаправленная передача). В результате количество линий связи существенно сокращается, а правила обмена (протоколы) упрощаются. Группа линий связи, по которым передаются сигналы или коды как раз и называется шиной (англ. bus).

Понятно, что при шинной структуре связей легко осуществляется пересылка всех информационных потоков в нужном направлении, например, их можно пропустить через один процессор, что очень важно для микропроцессорной системы. Однако при шинной структуре связей вся информация передается по линиям связи последовательно во времени, по очереди, что снижает быстродействие системы по сравнению с классической структурой связей.


Рис. 1.6. Шинная структура связей.

Большое достоинство шинной структуры связей состоит в том, что все устройства, подключенные к шине, должны принимать и передавать информацию по одним и тем же правилам (протоколам обмена информацией по шине). Соответственно, все узлы, отвечающие за обмен с шиной в этих устройствах, должны быть единообразны, унифицированы.

Существенный недостаток шинной структуры связан с тем, что все устройства подключаются к каждой линии связи параллельно. Поэтому любая неисправность любого устройства может вывести из строя всю систему, если она портит линию связи. По этой же причине отладка системы с шинной структурой связей довольно сложна и обычно требует специального оборудования.

Все устройства микропроцессорной системы объединяются общей системной шиной (она же называется еще системной магистралью или каналом). Системная магистраль включает в себя четыре основные шины нижнего уровня:

  • шина адреса (Address Bus);
  • шина данных (Data Bus);
  • шина управления (Control Bus);
  • шина питания (Power Bus).

Шина адреса служит для определения адреса (номера) устройства, с которым процессор обменивается информацией в данный момент. Каждому устройству (кроме процессора), каждой ячейке памяти в микропроцессорной системе присваивается собственный адрес. Когда код какого-то адреса выставляется процессором на шине адреса, устройство, которому этот адрес приписан, понимает, что ему предстоит обмен информацией. Шина адреса может быть однонаправленной или двунаправленной.

Шина данных — это основная шина, которая используется для передачи информационных кодов между всеми устройствами микропроцессорной системы. Обычно в пересылке информации участвует процессор, который передает код данных в какое-то устройство или в ячейку памяти или же принимает код данных из какого-то устройства или из ячейки памяти. Но возможна также и передача информации между устройствами без участия процессора. Шина данных всегда двунаправленная.

Шина управления в отличие от шины адреса и шины данных состоит из отдельных управляющих сигналов. Каждый из этих сигналов во время обмена информацией имеет свою функцию. Некоторые сигналы служат для стробирования передаваемых или принимаемых данных (то есть определяют моменты времени, когда информационный код выставлен на шину данных). Другие управляющие сигналы могут использоваться для подтверждения приема данных, для сброса всех устройств в исходное состояние, для тактирования всех устройств и т.д. Линии шины управления могут быть однонаправленными или двунаправленными.

Наконец, шина питания предназначена не для пересылки информационных сигналов, а для питания системы. Она состоит из линий питания и общего провода. В микропроцессорной системе может быть один источник питания (чаще +5 В) или несколько источников питания (обычно еще –5 В, +12 В и –12 В). Каждому напряжению питания соответствует своя линия связи. Все устройства подключены к этим линиям параллельно.







Дата добавления: 2015-06-15; просмотров: 1982. Нарушение авторских прав; Мы поможем в написании вашей работы!



Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...

Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...

Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...

Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...

Хронометражно-табличная методика определения суточного расхода энергии студента Цель: познакомиться с хронометражно-табличным методом опреде­ления суточного расхода энергии...

ОЧАГОВЫЕ ТЕНИ В ЛЕГКОМ Очаговыми легочными инфильтратами проявляют себя различные по этиологии заболевания, в основе которых лежит бронхо-нодулярный процесс, который при рентгенологическом исследовании дает очагового характера тень, размерами не более 1 см в диаметре...

Примеры решения типовых задач. Пример 1.Степень диссоциации уксусной кислоты в 0,1 М растворе равна 1,32∙10-2   Пример 1.Степень диссоциации уксусной кислоты в 0,1 М растворе равна 1,32∙10-2. Найдите константу диссоциации кислоты и значение рК. Решение. Подставим данные задачи в уравнение закона разбавления К = a2См/(1 –a) =...

ФАКТОРЫ, ВЛИЯЮЩИЕ НА ИЗНОС ДЕТАЛЕЙ, И МЕТОДЫ СНИЖЕНИИ СКОРОСТИ ИЗНАШИВАНИЯ Кроме названных причин разрушений и износов, знание которых можно использовать в системе технического обслуживания и ремонта машин для повышения их долговечности, немаловажное значение имеют знания о причинах разрушения деталей в результате старения...

Различие эмпиризма и рационализма Родоначальником эмпиризма стал английский философ Ф. Бэкон. Основной тезис эмпиризма гласит: в разуме нет ничего такого...

Индекс гингивита (PMA) (Schour, Massler, 1948) Для оценки тяжести гингивита (а в последующем и ре­гистрации динамики процесса) используют папиллярно-маргинально-альвеолярный индекс (РМА)...

Studopedia.info - Студопедия - 2014-2024 год . (0.008 сек.) русская версия | украинская версия