Студопедия — Изготовления и контроля качества микрополосковых СВЧ плат
Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Изготовления и контроля качества микрополосковых СВЧ плат






Технологический процесс изготовления плат с металлизированными отверстиями на подложках из ВЧ – ламинатов типа «Roger».

Фотолитография – это сложный технологический процесс, основанный на использовании необратимых фотохимических явлений, происходящих в нанесенном на подложки слое фоторезиста при его обработке ультрафиолетовым излучением через маску(фотошаблон).

Технологический процесс фотолитографии можно разделить на три стадии:

- формирование фоторезистивного слоя (обработка подложек с целью их очистки и повышения адгезионной способности, нанесение фоторезиста и его сушка);

- формирование защитного рельефа в слое фоторезиста (совмещение, экспонирование, проявление и сушка слоя фоторезиста, вторая сушка(задубливание);

- создание рельефного изображения на подложке (травление технологического слоя (пленок SiO2, Si3N4, металла), удаление слоя фоторезиста, контроль качества).

Позитивные и негативные фоторезисты.

Фоторезисты – это светочувствительные материалы с изменяющейся под действием света растворимостью, устойчивые к воздействию травителей и применяемые для переноса изображения на подложку.

Фоторезисты являются многокомпонентными мономерно-полимерными материалами, в состав которых входят: светочувствительные поливинилциннаматы в негативные фоторезисты и нафтохинондиазиды – в позитивные), пленкообразующие (чаще всего это различные фенолформальдегидные смолы, резольные и новолачные смолы) вещества, а также растворители (кетоны, ароматические углеводороды, спирты, диоксан, циклогексан, диметилформамид и др.).

В процессе фотолитографии фоторезисты выполняют две функции: с одной стороны, являясь светочувствительными материалами, они позволяют создавать рельеф рисунка элементов, а с другой, обладая резистивными свойствами, защищают технологический слой при травлении.

В основе создания рельефа в пленке фоторезистов лежит использование фотохимической реакции – фотополимеризации, а в пленке позитивных фоторезистов – реакции фоторазложения – фотолиза.

Для негативных фоторезистов освещенные при экспонировании участки не растворяются в проявителе и остаются на поверхности подложки. При этом рельеф представляет собой негативное изображение фотошаблоны. Для позитивных фоторезистов - соответственно наоборот.

Нанесение слоя фоторезиста.

Перед нанесением слоя фоторезиста производят очистку поверхности пластины. Нанесенный на предварительно подготовленную поверхность подложек слой фоторезиста должен быть однородным по толщине и по всему их полю, без проколов, царапин (т.е. быть сплошным) и иметь хорошую адгезию.

Наносят слой фоторезиста на подложки в обеспыленной среде, соблюдая технологические режимы. Используемый фоторезист должен соответствовать паспортным данным. Перед использованием его необходимо профильтровать через специальные фильтры, а в особо ответственных случаях (при производстве БИС) обработать на центрифуге при частоте вращения от 1 до 20 тыс. об/мин в течение нескольких часов. Это делают для того, чтобы удалить из фоторезиста инородные микрочастицы размером менее 1 мкм, которые могут привести к браку фоторезистивного слоя. Кроме того, необходимо проверить вязкость фоторезиста и довести ее до нормы.

Для нанесения слоя фоторезиста на подложки используют методы:

- центрифугирования;

- пульверизации;

- электростатический;

- окунание;

- полива;

- накатки пленки сухого фоторезиста.

Методом центрифугирования наносят слои фоторезиста, толщина которых колеблется в пределах ±10%. При вращении центрифуги с большой частотой происходит испарение растворителя, и вязкость фоторезиста быстро возрастает.

Сушка фоторезиста.

Для окончательного удаления растворителя из слоя фоторезиста его просушивают. При этом уплотняется молекулярная структура слоя, уменьшаются внутренние напряжения, и повышается адгезия к подложке. Неполное удаление растворителя из слоя фоторезиста снижает его кислотостойкость. Для удаления растворителя подложки нагревают до температуры, примерно равной 1000С. Время сушки выбирают оптимальным для конкретных типов фоторезистов.

Существуют три метода сушки фоторезиста:

- конвекционный;

- инфракрасный;

- посредством СВЧ-поля.

При конвекционной сушке подложки выдерживают в термокамере при 90-1000С в течение 15-30 мин. Недостаток этого метода – низкое качество получаемого фоторезистивного слоя.

При инфракрасной сушке источником теплоты является сама полупроводниковая подложка, поглощающая ИК-излучение от специальной лампы или спирали накаливания. Окружающая среда (очищенный и осушенный инертный газ или воздух) при этом сохраняет комнатную температуру. При данном механизме сушки время сокращается до 5-10 мин.

При СВЧ-сушке подложки нагреваются, поглащая электромагнитную Энергию СВЧ-поля. Такая сушка производится в печах мощностью от 200 до 400 Вт при рабочей частоте 2,45 ГГц. Время сушки – несколько секунд. Достоинством этого метода является высокая производительность, а недостатком – сложность оборудования и необходимость тщательного экранирования рабочего объема во избежание облучения оператора, а также неравномерность сушки слоя фоторезиста на различных по электрическим характеристикам участках подложек. Поэтому сушке в СВЧ-поле подвергают только однородные подложки.

Высушенный слой необходимо экспонировать не позднее чем через 10 ч.

Совмещение и экспонирование.

Совмещение и экспонирование являются наиболее ответственными операциями процесса фотолитографии. Точность полученного в процессе фотолитографии топологического рисунка в первую очередь определяется прецизионностью процесса.

Передача изображения с фотошаблона на подложку должна выполняться с точностью до десятых долей минимального размера элемента, поэтому процессы совмещения и экспонирования проводят на одном рабочем месте одновременно на одной установке, не допуская даже малой вибрации фотошаблона и подложки.

Перед экспонированием слоя фоторезиста фотошаблон следует правильно ориентировать относительно подложки и рисунка предыдущего слоя. Для полного формирования структуры полупроводникового прибора или ИМС необходим комплект фотошаблонов со строго согласованными топологическими рисунками элементов.

При первой фотолитографии, когда поверхность подложек еще однородна фотошаблон ориентируют относительно базового среза подложки. При последующих фотолитографиях, когда на подложках сформированы топологические слои, рисунок фотошаблонов ориентируют относительно рисунка предыдущего слоя.

Совмещают рисунки фотошаблона и подложки в два этапа. На первом этапе с помощью реперных модулей – «пустых кристаллов» выполняют грубое совмещение в пределах всего поля подложки. На втором этапе с помощью микроскопа в пределах единичного модуля по специальным знакам – фигурам совмещения, предусмотренным в рисунке каждого топологического слоя, выполняют точное совмещение. Форму фигур совмещения (кресты, круги, квадраты) выбирают в зависимости от типа используемого при фотолитографии фоторезиста.

Проявление слоя фоторезиста.

Проявление заключается в удалении в зависимости от использованного типа фоторезиста экспонированных или неэкспонированных участков, в результате чего на поверхности подложек остается защитный рельеф – фоторезистивная маска требуемой конфигурации.

Проявителями для негативных фоторезистов служат органические растворители: толуол, бензол, Уайт-спирит, трихлорэтилен, хлорбензол и др.

Для проявления позитивных фоторезистов используют слабые водные и водно-глицериновые растворы щелочей: 0,3-0,6 % раствор КОН, 1-2 % раствор тринатрийфосфата.

При проявлении негативных фоторезистов основными факторами являются полнота реакции полимеризации фоторезиста при экспонировании и тип проявителя, а позитивных – концентрация и время проявления.

Кроме того, важным фактором при проявлении фоторезистов является значение рН и температура проявителя. При изменении рН всего на десятую долю процента размер элемента рельефного рисунка может измениться на 10%. С ростом температуры скорость проявления участков увеличивается.

Сушка проявленного рельефа (задубливание).

Сушка проявленных участков фоторезиста – обеспечивает изменение в слое фоторезиста его структуры в результате полимеризации. Вследствие этого повышается стойкость слоя фоторезиста к действию травителей и улучшается его адгезия к подложке.

Задубливание слоя фоторезиста является второй сушкой и отличается от первой, выполняемой после его нанесения, более высокой температурой. При повышенных температурах происходит пластическая деформация слоя фоторезиста в зависимости от термопластичности, входящей в его состав полимерной основы, затягиваются мелкие отверстия, поры и дефекты.

Так, температура сушки негативных фоторезистов на сонове поливинилциннамата составляет 200-2200С при времени выдержки до 1 ч. При более высоких температурах даже кратковременная сушка вызывает термическое разрушение слоя фоторезиста: он приобретает коричневую окраску, поверхность покрывается мелкими трещинами и рельеф полностью теряет защитные свойства.

С ростом температуры сушки позитивных фоторезистов на основе нафтохинондиазида и каучуков улучшается их адгезия к подложке и увеличивается пластическая деформация. Например, сушка при 200-2400С в течение 30 мин. значительно улучшает стойкость фоторезистивной маски к травлению, особенно при фотолитографии на фосфорно-силикатном стекле, к которому фоторезисты обычно имеют плохую адгезию.

Удаление слоя фоторезиста.

Для удаления слоя фоторезистивной маски подложки обрабатывают в горячих органических растворителях (диметилформамиде, метилэтиленкетоне, моноэтаноламине и др.), при этом слой фоторезиста разбухает и вымывается. Скорость и чистота удаления фоторезиста зависят от степени его задубливания при второй термообработке.

При высоких температурах задубливания (более 140-1500С) в слое фоторезиста происходят термореактивные превращения, в результате которых он теряет способность растворяться в органических растворителях. В этом случае подложки два-три раза кипятят по 5-10 мин в концентрированной серной кислоте или смеси Каро (серная кислота и перекись водорода). Слой фоторезиста при этом разлагается и растворяется в кислоте, а затем его окончательно удаляют в органическом растворителе. Кислотное удаление фоторезиста нельзя применять при фотолитографии по металлу.

Некоторые фоторезисты хорошо удаляются в водных растворах поверхностно-активных веществ, например кипячением 5-10 мин в 30% растворе синтанола.

 







Дата добавления: 2015-06-15; просмотров: 1144. Нарушение авторских прав; Мы поможем в написании вашей работы!



Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...

Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...

Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...

Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

Деятельность сестер милосердия общин Красного Креста ярко проявилась в период Тритоны – интервалы, в которых содержится три тона. К тритонам относятся увеличенная кварта (ув.4) и уменьшенная квинта (ум.5). Их можно построить на ступенях натурального и гармонического мажора и минора.  ...

Понятие о синдроме нарушения бронхиальной проходимости и его клинические проявления Синдром нарушения бронхиальной проходимости (бронхообструктивный синдром) – это патологическое состояние...

Опухоли яичников в детском и подростковом возрасте Опухоли яичников занимают первое место в структуре опухолей половой системы у девочек и встречаются в возрасте 10 – 16 лет и в период полового созревания...

Определение трудоемкости работ и затрат машинного времени На основании ведомости объемов работ по объекту и норм времени ГЭСН составляется ведомость подсчёта трудоёмкости, затрат машинного времени, потребности в конструкциях, изделиях и материалах (табл...

Гидравлический расчёт трубопроводов Пример 3.4. Вентиляционная труба d=0,1м (100 мм) имеет длину l=100 м. Определить давление, которое должен развивать вентилятор, если расход воздуха, подаваемый по трубе, . Давление на выходе . Местных сопротивлений по пути не имеется. Температура...

Огоньки» в основной период В основной период смены могут проводиться три вида «огоньков»: «огонек-анализ», тематический «огонек» и «конфликтный» огонек...

Studopedia.info - Студопедия - 2014-2024 год . (0.012 сек.) русская версия | украинская версия