Студопедия — Основные принципы и методы топографической съемки местности
Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Основные принципы и методы топографической съемки местности






 

Как было сказано выше, картографической информацией является только та информация, которая, помимо своего содержания, несет и сведения о пространственных координатах точек определенного объекта или явления. Например, получены размеры строения, которое в заданном масштабе определяется положениями его углов. Для картографического изображения, кроме того, необходимы сведения о координатах данных углов строения. Только в этом случае указанный объект может быть отображен на карте или плане, только в этом случае можно говорить о взаимосвязи этого объекта с другими, составляющими картографическое изображение. То же самое относится и к фиксированным точкам какого-либо явления. Предположим, что на местности были взяты пробы грунта на содержание химически опасного вещества. Для построения картографического изображения зоны загрязнения необходимо знание результатов исследования проб, а также мест их взятия, определяемых координатами в принятой системе координат. В этом случае указанные точки могут быть нанесены на карту (план), и на основе этого полученное картографическое изображение явления может быть проанализировано со всех позиций, определяющих решение поставленной задачи.

 

11.1. Государственная геодезическая сеть. Сети сгущения.

Съемочные сети

 

Для получения плановых координат и высот точек объектов и явлений, происходящих на физической поверхности Земли и в ее недрах используется Государственная геодезическая сеть (ГГС). ГГСэто система точек, определенным образом закрепленных на поверхности Земли, для которых с высокой степенью точности известны плановые координаты и абсолютные высоты. ГГС подразделяется на четыре класса точности: I, II, III и IV. Самый точный из них – I-й класс. В необходимых случаях производят сгущение сети прокладкой на местности сетей сгущения 1-го и 2-го разрядов (по точности). Привязку (определение координат точек сетей сгущения) выполняют к пунктам ГГС.

Для привязки точек объектов и явлений на местности прокладывают системы теодолитных ходов, виды и форма которых определяется конкретными задачами съемки. Теодолитный ход – это система закрепленных на поверхности Земли точек (долговременного или кратковременного использования), координаты которых определяют в процессе привязки к пунктам ГГС, либо к пунктам сетей сгущения.

Теодолитные ходы бывают нескольких видов: разомкнутый, замкнутый, диагональный, висячий, свободный.

Разомкнутый теодолитный ход. На рис. 36 а представлена схема разомкнутого теодолитного хода, опирающегося на два исходных направления: AВ и СD, определяемых положениями пунктовА, В, С и D.

Для азимутальной привязки (определения дирекционных углов) линий теодолитного хода, определения координат и высот его точек измеряют: примычные углы g1, g2,; горизонтальные углы b1, b2,... в вершинах теодолитного хода; наклонные расстояния S и углы наклона n (по принятому направлению хода, например, (В - 1 - 2 -... - С).

Обратите внимание на то, что в принятом направлении хода горизонтальные углы в его вершинах, как это отмечено на рисунке, являются правыми по ходу (при движении в принятом направлении правые горизонтальные углы остаются с правой руки, левые – с левой).

Разомкнутые теодолитные ходы используются при топографической съемке сравнительно узких полос местности, например, при трассировании дорог, линий связи и др. При съемке больших площадей прокладывают несколько разомкнутых теодолитных ходов с узловыми точками в сочетании с замкнутыми, диагональными, висячими теодолитными ходами.

Замкнутый теодолитный ход удобно использовать при съемке небольших площадей примерно округлой формы.

 

Рис. 36. Виды теодолитных ходов

а – разомкнутый; б,в – замкнутые; г – диагональный и висячий; д – свободный замкнутый; е – свободный разомкнутый; DА, DВ,... – пункты Государственной геодезической сети; 1, 2, 3,... – вершины теодолитных ходов.

- - - - ® - принятое направление хода

 

Привязка замкнутого теодолитного хода может быть выполнена по двум исходным направлениям с непосредственным включением в вершину многоугольника пункта В Государственной геодезической сети (рис. 36 б) или точки с известными прямоугольными координатами, либо прокладкой дополнительного (подходного) хода от исходных точек (группы пунктов ГГС) - рис. 36 в. В первом случае (рис. 36 б) дирекционный угол передается на сторону 1-2 с помощью двух примычных углов g 1 и g2, во втором (рис. 36 в) - с помощью нескольких, например, трех g1, g2, g3, как это следует из схемы теодолитного хода.

При выбранном направлении хода могут быть измерены правые или левые по ходу горизонтальные углы. На схемах - правые углы являются внутренними углами многоугольника, левые – примычные углы в принятом направлении хода. S (i-1)i и n(i-1)i - соответственно наклонные расстояния и углы наклона линий теодолитных ходов (в том числе и ходов, являющихся подходными).

Диагональный ход (рис. 36 в) используют в тех случаях, когда с основного, обычно замкнутого теодолитного хода, невозможно произвести съемку всей территории. Диагональный ход (2 – 7 - 5) опирается на линии теодолитного хода, и его привязка осуществляется с помощью измеренных горизонтальных углов, например, g1 и g2. Для надежного контроля выполняют измерение и других примычных углов (g3 и g4), что фактически приводит к схеме разомкнутого теодолитного хода. При этом требования к точности диагонального хода несколько ниже, чем к точности основного.

Висячий теодолитный ход (2-8-9-10: рис. 36 в) прокладывают в труднодоступных местах. Обычно его используют на застроенной территории при съемках в глухих дворах, для съемки закрытых от основного хода точек.

Следует обратить внимание на то, что висячий теодолитный ход, в отличие от рассмотренных выше (разомкнутого, замкнутого и диагонального ходов), не обеспечивает полного контроля результатов измерений и вычислений, В связи с этим необходимо быть весьма внимательным при производстве работ и при вычислениях, особенно в тех случаях, когда углы b, например, в точках 8 и 9 близки к 1800.

Свободный теодолитный ход. Преимущественно рекомендуется использовать замкнутый свободный теодолитный ход (рис. 36 д), поскольку в нем обеспечивается сравнительно надежный контроль измерений и вычислений и надежная оценка точности по сумме измеренных внутренних или внешних углов, суммам приращений координат и т.п. Разомкнутый cвободный теодолитный ход (рис. 36 г) полностью не обеспечивает контроля измерений и вычислений.

Вычисление координат и высот точек свободных теодолитных ходов выполняют в условной системе, часто с привязкой по магнитному меридиану.

Используют свободные ходы в тех случаях, когда не имеется необходимости в получении координат в принятой системе. Например, при использовании полученного плана для решения локальной задачи составления проекта вертикальной планировки, проекта реконструкции какого-либо инженерного сооружения и т.п. В этих случаях достаточно только ориентирования плана по магнитному азимуту.

 

11.2. Прямая и обратная геодезические задачи

 

Прямая и обратная геодезические задачи используются при азимутальной привязке теодолитных ходов и при определении координат их точек.

Прямая геодезическая задача имеет следующее содержание: известны прямоугольные координаты точки 1 (рис. 37), дирекционный угол направления 1-2 и расстояние (горизонтальное проложение) между точками 1 и 2; следует определить прямоугольные координаты точки 2.

Рис. 37. Прямая и обратная геодезические задачи

 

Очевидно, что в зависимости от величины дирекционного угла значения приращений координат будут иметь разные знаки, т.е. координаты точки 2

могут оказаться меньше или больше координат точки 1 при вычислениях их по формулам

Х2 = Х1 + ΔХ (19)

У2 = У1 + ΔУ (20)

Практически решение прямой геодезической задачи сводится к определению приращений координат Х и У:

ΔХ = d12 соs a12 (21)

ΔУ = d12 sin a12, (22)

где d12 – горизонтальное проложение линии 1-2; a12 – дирекционный угол линии 1-2.

Пример

Решение прямой геодезической задачи

Известны координаты точки 1: Х1 = 3456,826 м; У1 = 5620,227 м. Известен дирекционный угол направления 1-2: a12 = 255º 34,7'. Горизонтальное проложение линии 1-2 d12 = 185,347 м. Определить координаты точки 2.

ΔХ = 185,347 cos 255º 34,7' = - 46,162 м

ΔУ = 185,347 sin 255º 34,7' = - 179,507 м

Х2 = 3456,826 + (- 46,162) = 3410,664 м

У2 = 5620,227 + (- 179,507) = 5440,720 м

 

Обратная геодезическая задача. Содержание задачи: известны прямоугольные координаты X и Y точек 1 и 2 (рис. 37); необходимо найти дирекционный угол направления 1-2 и горизонтальное проложение между точками 1 и 2.

Принцип решения обратной геодезической задачи заключается в следующем.

Для определения дирекционного угла направления 1-2 следует вычислить приращения координат D X и DY точки 2 по отношению к точке 1:

DX = X2 - X1 (23)

DY = Y2 - Y1 (24)

и румбовое значение данного направления.

Румб линии – это острый угол (см. раздел 9), заключенный между направлением линии и ближайшим направлением меридиана; румбы имеют название по основным сторонам света: северо-восточный (СВ), северо-западный (СЗ), юго-восточный (ЮВ), юго-западный (ЮЗ). На рис. 19 показана взаимосвязь между значениями румбов и дирекционных углов направлений.

r1-2 = arctg |DU/DC|, (25)

где DY и DX - абсолютные величины приращений координат (без учета их знака).

Переход от значения румба к дирекционному углу производится с использованием табл. 2 по полученным в формулах (23) и (24) знакам приращений координат.

Горизонтальное проложение из решения обратной геодезической задачи находят по формуле (по теореме Пифагора, см. рис. 37):

(26)

Таблица 2







Дата добавления: 2015-06-15; просмотров: 1681. Нарушение авторских прав; Мы поможем в написании вашей работы!



Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...

Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...

Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...

Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...

ОЧАГОВЫЕ ТЕНИ В ЛЕГКОМ Очаговыми легочными инфильтратами проявляют себя различные по этиологии заболевания, в основе которых лежит бронхо-нодулярный процесс, который при рентгенологическом исследовании дает очагового характера тень, размерами не более 1 см в диаметре...

Примеры решения типовых задач. Пример 1.Степень диссоциации уксусной кислоты в 0,1 М растворе равна 1,32∙10-2   Пример 1.Степень диссоциации уксусной кислоты в 0,1 М растворе равна 1,32∙10-2. Найдите константу диссоциации кислоты и значение рК. Решение. Подставим данные задачи в уравнение закона разбавления К = a2См/(1 –a) =...

Экспертная оценка как метод психологического исследования Экспертная оценка – диагностический метод измерения, с помощью которого качественные особенности психических явлений получают свое числовое выражение в форме количественных оценок...

Плейотропное действие генов. Примеры. Плейотропное действие генов - это зависимость нескольких признаков от одного гена, то есть множественное действие одного гена...

Методика обучения письму и письменной речи на иностранном языке в средней школе. Различают письмо и письменную речь. Письмо – объект овладения графической и орфографической системами иностранного языка для фиксации языкового и речевого материала...

Классификация холодных блюд и закусок. Урок №2 Тема: Холодные блюда и закуски. Значение холодных блюд и закусок. Классификация холодных блюд и закусок. Кулинарная обработка продуктов...

Studopedia.info - Студопедия - 2014-2024 год . (0.01 сек.) русская версия | украинская версия