Студопедия Главная Случайная страница Задать вопрос

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Элементы теории погрешностей измерений




Измерением называют процесс сравнения измеряемой величины с другой, принятой за единицу измерения известной величины.

Точность измерений – качество измерений, определяющее близость их результатов к точному значению измеряемой физической величины.

Стандарт – критерий (показатель, мера) оценки точности результатов измерений.

Измерения различают:

1. Прямые измерения (простейшие – измерение длин линий землемерной лентой или рулеткой).

2. Косвенные – основываются на использовании некоторых математических зависимостей между искомыми и непосредственно измеряемыми величинами (площадь прямоугольника на местности определяют, измерив длины его сторон).

3. Дистанционные измерения основываются на использовании ряда физических процессов и явлений и, связаны с использованием современных технических средств: светодальномеров, электронных тахеометров, фототеодолитов и т.д.

На точность проводимых измерений влияют ряд факторов и условий: сам объект измерений, используемые единицы измерений, технические средства, технология и методы производства работ, состояние окружающей среды, опыт производителей и др. В связи с этим измерения, производимые в условиях, при которых все получаемые результаты можно считать одинаково надежными, называются равноточными и, наоборот, когда результаты нельзя считать одинаково надежными – неравноточными.

Измерения на местности являются важной частью всех геодезических работ. Любые измерения сопровождаются ошибками - погрешностями. Различают следующие виды ошибок (погрешностей): грубые, систематические и случайные. Грубые ошибки измерений или промахи должны быть выявлены и исключены. С этой целью выполняются повторные измерения и вычисления. Систематическиеошибки возникают в результате влияние какой-то причины. Например, из-за неисправности инструмента. Источник систематической ошибки необходимо выявить и устранить.

Случайные ошибки являются следствием различных факторов. Закономерность возникновения случайных ошибок при небольшом ряде измерений не обнаруживается. Для уменьшения влияния случайных погрешностей на результаты измерений прибегают к многократным измерениям, к улучшению условий работы и др.

Исследованиями установлены следующие свойства случайных ошибок:

1. по абсолютному значению они не превосходят определенной величины, соответствующей данным условиям измерений,

2. положительные и отрицательные случайные ошибки встречаются одинаково часто,

3. чем больше абсолютная величина случайной ошибки, тем реже она встречается в данном ряду измерений,

4. с увеличением числа измерений среднее арифметическое из случайных ошибок стремится к нулю.

Поведение случайных погрешностей в ряду равноточных измерений (их свойства) подчиняется закону нормального распределения Гаусса.

Если обозначить точное значение какой-либо величины через Х, а ее измеренное значение через l , то абсолютная величина случайной погрешности и ее знак определяется разностью:

 

∆=l – Х

 

Разность между результатом измерения некоторой величины l и ее истинным значением Х называют абсолютной (истинной) погрешностью.

Абсолютная погрешность не является исчерпывающе полным показателем точности выполненных работ. Например, если некоторая линия, фактическая длина которой составляет 1000 м, измерена землемерной лентой с ошибкой 0,50 м, а отрезок длиною 200 м – с ошибкой 0,20 м, то, несмотря на то, что абсолютная погрешность первого измерения больше второго, все же первое измерение было выполнено с точностью в два раза более высокой. Поэтому необходимо ввести понятие относительной погрешности:

 

ξ=∆/l

Отношение абсолютной погрешности измеряемой величины ∆ к самой этой величине l называют относительной погрешностью.

Относительные погрешности ε всегда выражаются дробью с числителем, равным единице. Так, в приведенном выше примере относительная погрешность первого измерения составляет 1/2000, а второго – 1/1000.

 






Дата добавления: 2015-06-15; просмотров: 151. Нарушение авторских прав

Studopedia.info - Студопедия - 2014-2017 год . (0.007 сек.) русская версия | украинская версия