Студопедия — Гомогенное распределение микрокомпонента между твердой и жидкой фазами
Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Гомогенное распределение микрокомпонента между твердой и жидкой фазами






Процессы изоморфной и изодиморфной сокристаллизации в зависимости от условий опыта могут приводить к гомогенному или гетерогенному распределению радиоактивного элемента между твердой и жидкой фазами. При этом гомогенным мы будем называть такое распределение, которое характеризуется установлением термодинамического равновесия между кристал­лом в целом и раствором.

Вопрос о распределении веществ, в частности электролитов,
между твердой фазой и раствором привлекал внимание хими­ков уже в 90-х годах прошлого столетия, когда были осуще­ствлены классические исследования Я. Вант-Гоффа и Б. Розебума. Теоретические работы этих ученых были посвящены
изучению твердых растворов и условий равновесия между сме­шанными кристаллами и растворами, из которых произошло ихвыделение. Применимость газовых законов к разбавленным растворам, не исключая и кристаллических растворов или изо­морфных смесей, открывала перед исследователями возмож­ность определять экспериментальным путем молекулярное со­стояние в твердых телах.

Распределение вещества между кристаллической и жидкой фазами должно происходить по закону, аналогичному тому, который управляет распределением вещества между газообраз­ной и жидкой фазами (закон Генри — Дальтона) и между двумя жидкими фазами (закон Бертло — Нернста), т. е. должно быть справедливым соотношение:

KN = (1)

где с(S) и с(L)—равновесные концентрации микрокомпонента в твердой и жидкой фазах; КN — константа распределения (константа Нернста),

Очевидно, что закон распределения вещества между двумя фазами может быть справедливым в простой форме (1) при следующих условиях:

а) если имеет место истинное термодинамическое равновесие между кристаллами и раствором;

б) если процесс распределения происходит при неизменном составе фаз и постоянных внешних условиях (температура и давление);,

в) если молекулярное состояние распределяющегося веще­ства в обеих фазах одинаково.

Однако, воз­можность распределения радиоактивных элементов в системах типа «раствор — твердая кристаллическая фаза» по закону Бертло — Нернста оспаривалась рядом видных ученых, в том числе Г. Тамманом и О. Ханом. Основным теоретическим дово­дом этих ученых являлось то, что в силу чрезвычайной медлен­ности диффузионных процессов в твердом теле при низких тем­пературах они не могут обеспечить состояния истинного термо­динамического равновесия между кристаллами и раствором.

Но исследования В. Г. Хлопина и его учеников показали, что в определенных условиях в таких системах может устанав­ливаться истинное термодинамическое равновесие, и, следова­тельно, должен иметь место закон распределения Бертло — Нернста. Отправным моментом для этих исследований послу­жили наблюдения за разделением радия и бария в процессе дробной кристаллизации их хлоридов. Наблюдения эти гово­рили о том, что исследователи имели дело с системами, весьма близкими к состоянию истинного равновесия между кристал­лами и раствором. Поэтому распределение радия при процессах дробной кристаллизации можно было рассматривать как рас­пределение вещества между двумя несмешивающимися раство­рителями (в данном случае между кристаллической фазой и раствором). Следовало ожидать далее, что распределение это будет подчиняться закону Бертло — Нернста, что и оправдалось в действительности.

Одной из важнейших причин успеха исследований В. Г. Хло­пина и его учеников явилось применение в качестве распреде­ляющихся веществ радиоактивных элементов, т. е. изучение си­стем, крайне разбавленных в отношении одного из компонентов, что обеспечивало выполнение второго условия, необходимого для достижения распределения компонентов по закону Бертло — Нернста.

В своих первых работах по изучению соосаждения солей ба­рия и радия В. Г. Хлопин и его ученики использовали для вы­числения константы KN соотношение:

: = KN (2)

где g — масса жидкой фазы;

т — масса твердой кристаллической фазы;

d 0 и d1 — плотности твердой и жидкой фаз;

х — доля микрокомпонента, перешедшая в твердую фазу;

1-х — доля микрокомпонента, оставшаяся в жидкой фазе

 

В дальнейшем для представления экспериментальных данных по распределению компонентов между сосуществующими фазами более удобной оказалась формула, предложенная Л. Гендерсоном и Ф. Крэчеком:

 

: =D (3)

 

где х и у - количества макро- и микрокомпонентов, перешедших в кристаллическую фазу; а и b — первоначальные количества макро- и микрокомпонентов в системе; D — коэффициент кристаллизации.

Величина D отражает сущность процесса распределения микрокомпонента между кристаллической фазой и раствором: она показывает, во сколько раз отношение между количествами микро- и макрокомпонентов в кристаллах больше (D > 1), равно (D = 1) или меньше (D < 1), чем аналогичное отношение в растворе, равновесном с кристаллами.

Было показано, что связь между константами распределения (KN) и кристаллизации (D) дается выражением:

 

D = KN (4)

 

Где с1- концентрация микрокомпонента в равновесном растворе; d0 – плотность кристаллической фазы.

Экспериментальное доказательство применимости закона Бертло — Нернста к распределению электролитов между раство­рами и кристаллами оказалось довольно трудным. Это объясня­лось, в основном, тем, что благодаря практически полному от­сутствию в кристаллах диффузии (при комнатной температуре) не удавалось осуществить первое из отмеченных выше усло­вий — истинное равновесие между раствором и кристаллами. Однако и при низких температурах удалось в конце концов найти путь, ведущий к выравниванию концентраций в твердой фазе. Таким путем, как показал В. Г. Хлопин, может служить перекристаллизация.

Оказалось, что в случае образования кристаллов из сильно пересыщенных растворов число первоначально возникающих кристаллизационных центров во много раз превышает число выросших впоследствии кристаллов. Таким образом, росту кри­сталлов предшествует образование большого числа зародышей, которые еще в стадии субмикронов успевают многократно пере­кристаллизоваться и таким путем гомогенизироваться. Рост кристаллов в этом случае происходит путем срастания отдель­ных однородных кристаллов (субмикронов),

Для подтверждения возможности экспериментального осуществления истинного термодинамического равновесия между твердой кристаллической фазой и раствором В. Г. Хлопин использовал несколько путей.

Первый путь состоял в длительной многократной перекри­сталлизации кристаллов макрокомпонента в его насыщенном растворе, содержащем микрокомпонент. С этой целью в стек­лянные пробирки отвешивали примерно равные количества мелкоизмельченной соли чистого макрокомпонента, а затем до­бавляли в них по 25 мл насыщенного раствора макрокомпо­нента, содержащего радиоактивный элемент. После этого про­бирки помещали в термостат и энергично перемешивали смесь до тех пор, пока концентрация микрокомпонента в насыщенном растворе не переставала изменяться. После окончания опыта отбирали пробы раствора для определения содержания в них макро- и микрокомпонента. Как показали опыты, время уста­новления равновесия зависит от свойств макрокомпонента и температуры (при 25° оно составляет примерно 3—4 недели).

Этот путь позволял проследить за ходом установления равновесия «снизу».

Второй путь состоял в кристаллизации из пересыщенного раствора при энергичном перемешивании. С этой целью приго­товляли насыщенный при определенной температуре (обычно О и 25°) раствор макрокомпонента, содержащий микрокомпо­нент, и мелкоизмельченную чистую соль макрокомпонента. В стеклянные пробирки емкостью 75—100 мл, снабженные при­тертыми пробками, отвешивали различные количества соли макрокомпонента и добавляли по 25 мл насыщенного раствора. Количество добавленного раствора определяли взвешиванием. После этого пробирки закрывали и нагревали на водяной бане до полного растворения твердой фазы. По окончании растворе­ния пробирки помещали в термостат, имеющий температуру, одинаковую с той, при которой приготовлялся насыщенный раствор макрокомпонента. После этого раствор энергично пере­мешивали в течение 4—8 часов до полного снятия пересыщения. Далее отделяли осадок и производили химический анализ твер­дой и жидкой фаз на содержание в них макро- и микрокомпо­нента

Третий путь состоял в длительной многократной перекри­сталлизации заранее приготовленных смешанных кристаллов макро- и микрокомпонента в насыщенном растворе макроком­понента. С этой целью приготовляли насыщенный при опреде­ленной температуре раствор чистого макрокомпонента и мелко­измельченные смешанные кристаллы макро- и микрокомпонента. Далее отвешивали приблизительно равные количества смешан­ных кристаллов, добавляли 25 мл насыщенного раствора и про­изводили длительное перемешивание при определенной темпе­ратуре до установления равновесия. После этого раствор и твердую фазу анализировали на содержание в них макро- и микрокомпонента.

Этот путь позволял проследить за ходом установления равновесия «сверху».

Таким образом, при условии достижения истинного термоди­намического равновесия распределение изоморфного или изодиморфного микрокомпонента должно подчиняться соотношению (1), т. е. следовать закону, который применительно к системе типа жидкость — твердое тело называется законом Хлопина и может быть сформулирован в общей форме следующим обра­зом: при достижении термодинамического равновесия между кристаллами и раствором двух веществ, способных образовы­вать истинные твердые растворы, распределение компонентов между фазами следует линейному закону, согласно которому отношение концентраций компонентов в сосуществующих фазах является величиной, не зависящей от соотношения объе­мов фаз.

При ничтожно малых концентрациях одного из компонен­тов КN не только не зависит от соотношения объемов фаз, но и сохраняет свое значение в весьма широком интервале концен­траций (обычно до 10-2 М). При значительном увеличении кон­центраций КN, как правило, изменяется, поскольку изменяется состав фаз.

Если вместо концентраций использовать активности, то ве­личина КN оказывается постоянной при любых концентрациях компонента.

 







Дата добавления: 2015-06-15; просмотров: 908. Нарушение авторских прав; Мы поможем в написании вашей работы!



Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...

Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...

Логические цифровые микросхемы Более сложные элементы цифровой схемотехники (триггеры, мультиплексоры, декодеры и т.д.) не имеют...

Экспертная оценка как метод психологического исследования Экспертная оценка – диагностический метод измерения, с помощью которого качественные особенности психических явлений получают свое числовое выражение в форме количественных оценок...

В теории государства и права выделяют два пути возникновения государства: восточный и западный Восточный путь возникновения государства представляет собой плавный переход, перерастание первобытного общества в государство...

Закон Гука при растяжении и сжатии   Напряжения и деформации при растяжении и сжатии связаны между собой зависимостью, которая называется законом Гука, по имени установившего этот закон английского физика Роберта Гука в 1678 году...

Понятие метода в психологии. Классификация методов психологии и их характеристика Метод – это путь, способ познания, посредством которого познается предмет науки (С...

ЛЕКАРСТВЕННЫЕ ФОРМЫ ДЛЯ ИНЪЕКЦИЙ К лекарственным формам для инъекций относятся водные, спиртовые и масляные растворы, суспензии, эмульсии, ново­галеновые препараты, жидкие органопрепараты и жидкие экс­тракты, а также порошки и таблетки для имплантации...

Тема 5. Организационная структура управления гостиницей 1. Виды организационно – управленческих структур. 2. Организационно – управленческая структура современного ТГК...

Studopedia.info - Студопедия - 2014-2024 год . (0.008 сек.) русская версия | украинская версия