Студопедия — Филогения типа Spongia
Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Филогения типа Spongia

По уровню организации Trichoplax соответствует паренхимуле — характерной личинке губок и кишечнополостных (с. 11О), которая, ве­роятно, рекапитулирует основные черты фагоцителлы — предполагаемо­го общего предка всех многоклеточных животных (см. с. 110). Поэтому можно думать, что Placozoa представляют собой ближайших потомков фагоцителлы, перешедших от первоначального свободноплавающего образа жизни к ползанию на поверхности водорослей. Тело их при этом утратило первичную переднезаднюю полярность и превратилось в тон­кую пластинку. Открытие Placozoa — новое подтверждение правильности теории И. П. Мечникова о происхождении многоклеточных животных

Gillum (по Шульце): 1 — поверхностный (дермальный) слой, 2 — синцитиальные перемычки в наружном слое тела, 3 — жгутиковые камеры, 4—мелкие иглы (микросклеры), 5 — крупные иглы

(макросклеры)

щие скелет, крайне разнообразны, в основе трехосные. Часто спаивают­ся концами, образуя решетки разной сложности (рис. 89). Характерная черта стеклянных губок — слабое развитие мезоглеи и слияние клеточ­ных элементов в синцитиальные структуры. Типичный род Euplectella (см. рис. 80). У некоторых видов этого рода тело цилиндрическое, до 1 м в высоту, иглы у основания, втыкающиеся в грунт, достигают 3 м длины.

КЛАСС III. ОБЫКНОВЕННЫЕ ГУБКИ (DEMOSPONGIA)

К этому классу принадлежит большинство современных губок. Ске­лет кремневый, спонгиновый или сочетание того и другого. Сюда отно­сится отряд четырехлучевых губок (Tetraxonia), скелет которых слагает-


I

ся четырехосными иглами с примесью одноосных. Характерные предста­вители: шаровидные крупные геодии (Geodia), ярко окрашенные оранжево-красные морские апельсины (Tzthya)^, комковидные яркие пробковые губки (сем. Suberitidae), сверлящие губки (сем. Clionidae) и многие другие (см. рис. 88). Второй отряд класса Demospongia — кремнероговые губки (Cornacuspongida). В состав скелета входит спон­гин как единственный компонент скелета или в разных соотношениях с кремневыми иглами. Сюда принадлежат туалетные губки, немногочис­ленные представители пресноводных губок — бадяг из сем. Spongillidae (см. рис. 84), эндемичные байкальские губки сем. Lubomirskiidae.

Филогения типа Spongia

В организации губок много признаков большой примитивности: от­сутствие настоящих дифференцированных тканей и органов, чрезвычай­ная пластичность клеточных элементов, отсутствие резко выраженной индивидуальности в колониях — все это свидетельство того, что губ­ки— просто устроенные представители многоклеточных.

Если принять теорию Мечникова о происхождении многоклеточных (с. 93), то легко видеть, что личинка, свойственная большинству гу­бок,— паренхимула (см. рис. 86), по строению почти полностью соответ­ствует гипотетической мечниковской фагоцителле. У нее имеется поверх­ностный, эктодермальный слой жгутиковых клеток и внутренний рыхлый слой клеток — энтодерма. Можно предположить, что фагоцителла пере­шла к сидячему образу жизни и таким путем дала качало типу губок. При этом, как уже отмечалось (с. 109), судьба клеточных слоев фагоци-теллы у губок оказалась иной, чем у прочих многоклеточных («извра­щение» зародышевых листков): наружный эктодермальный слой жгути­ковых клеток у губок дал начало пищеварительному слою хоаноцитов, который вместе с тем осуществляет кинетическую мерцательную водо-движущую функцию; внутренние энтодермальные клетки зародыша, ко­торые у других групп животных дают начало энтодермальной кишке, у губок превращаются в клетки поверхности тела (дермальные) и в кле­точные элементы мезоглеи. Все эти факты говорят о том, что отделение губок от ствола многоклеточных произошло очень рано, еще до того, как определилась окончательная судьба двух основных клеточных пластов тела. Некоторые зоологи считают, что губки произошли от колониаль­ных воротничковых жгутиконосцев независимо от прочих многоклеточ­ных. Другие полагают, что многоклеточные происходят общим стволом, от которого очень рано отделились губки. Второй взгляд представляется более обоснованным потому, что личинка — паренхимула губок — сходна с планулой кишечнополостных. Это говорит об общности их происхож­дения.

Губки — очень древние организмы. Их ископаемые остатки многочис­ленны в кембрийских морских отложениях. Встречаются они и в проте­розойских породах.


НАДРАЗДЕЛ EUMETAZOA

РАЗДЕЛ ЛУЧИСТЫЕ (RADIATA)

ТИП КИШЕЧНОПОЛОСТНЫЕ (COELENTERATA, ИЛИСМОАША)

Кишечнополостные ведут исключительно водный и в большинстве случаев морской образ жизни. Одни из них свободно плавают, другие, не менее многочисленные формы — сидячие и прикрепленные ко дну жи­вотные. К Coelenterata относится около 9000 видов.

Строение кишечнополостных характеризуется радиальной, или лу­чистой, симметрией. В теле их можно различить одну главную продоль­ную ось, вокруг которой в радиальном (лучистом) порядке расположены различные органы. От числа повторяющихся органов зависит порядок радиальной симметрии. Так, если вокруг продольной оси располагается 4 одинаковых органа, то радиальная симметрия в этом случае называет­ся четырехлучевой. Если таких органов шесть, то и порядок симметрии будет шестилучевым, и т. д. Ввиду подобного расположения органов че­рез тело кишечнополостных можно всегда провести несколько (2, 4, 6, 8 и более) плоскостей симметрии, т. е. плоскостей, которыми тело делится ка две половины, зеркально отображающие одна другую. В этом отно­шении кишечнополостные резко отличаются от двустороннесимметрич-ных, или билатеральных, животных (Bilateria), у которых всего одна плоскость симметрии, делящая тело на две зеркально подобные полови­ны: правую и левую.

Радиальная симметрия встречается у нескольких далеко друг от дру­га стоящих групп животных, которые, однако, имеют общую биологиче­скую черту. Все они или ведут в настоящее время сидячий образ жизни, или вели его в прошлом, т. е. происходят от прикрепленных животных. Отсюда можно сделать вывод, что сидячий образ жизни способствует развитию лучистой симметрии.

Биологически это правило объясняется тем, что у сидячих животных один полюс служит обычно для прикрепления, другой, свободный, не­сет на себе рот. Свободный ротовой полюс животного по отношению к окружающим предметам (в смысле возможности захвата пищи, осяза­ния и т. п.) поставлен со всех сторон в совершенно одинаковые условия, вследствие чего многие органы и получают одинаковое развитие на раз­ных пунктах тела, расположенных вокруг главной оси, проходящей че­рез рот до противоположного ему прикрепленного полюса; результатом этого является выработка лучистой симметрии. Совсем иначе дело об­стоит у ползающих животных.

Кншечнополостные—-двухслойные животные (Diploblastica): в онто­генезе у них формируются-только два зародышевых листка — экто- и

Н4






~*т А

В

 


 


Рис. 90. Старинные изображения различных Eumetazoa. А — пресноподный малоще-тинковый червь в изображении Розель фон Розснгофа (1775); Б — водяная блоха — дафния (из Франсэ), фантастически нарисована голова с птичьим клювом, глазом и бровью; В — ракообразные, слева — изображение краба на древней греческой моне­те, форма тела и конечности животного переданы необычайно правдиво; справа — изображение морского таракана (рачок из отр. Isopoda по Себастиану Мюнстсру, 1550), рисунок обнаруживает полное незнание автором изображаемого животного; Г — древнеегипетский рисунок жука-скарабея, следует отметить совершенно непра­вильное изображение «крыльев», напоминающих крылья птиц; Д — изображение ось­минога на критской вазе (около 1500 лет до н. э.), рисунок поражает живостью пе­редачи и значительной точностью, если не считать раздвоенности конца тела; Е— морские звезды (Олаф Магнус, середина XVI в.), интересен антропоморфизм рисунка (человеческие глаза, нос и рот) и совершенно неправильная ориентировка животных

(рот кверху, а не книзу)


энтодерма, отчетливо выраженные и у взрослого животного. Эктодерма и энтодерма разделены прослойкой мезоглеи.

В наиболее простом случае тело кишечнополостных имеет вид откры­того на одном конце мешка. В полости мешка, выстланной энтодермой, происходит переваривание пищи, а отверстие служит ртом. Последний обычно окружен несколькими или одним венчиком щупалец, захватыва­ющих пищу. Непереваренные остатки пищи удаляются из тела через ро­товое отверстие. По строению наиболее просто организованные из ки­шечнополостных могут быть сведены к типичной гзструле.

В зависимости от образа жизни эта схема строения может несколько изменяться. Наиболее близки к ней сидячие формы, которым дано общее наименование — полипы: свободноплавающие кишечнополостные испы­тывают обычно сильное уплощение тела по направлению главной оси — это медузы. Деление на полипов и медуз не систематическое, а чисто морфологическое; иногда один и тот же вид кишечнополостных на раз­личных стадиях жизненного цикла имеет строение то полипа, то меду­зы. В медузоидном состоянии кишечнополостные, как правило, одиноч­ные животные. Напротив, полипы лишь в редких случаях'\5ывают оди­ночными. Громадное большинство их, начиная жизнь как одиночный по­лип, образует затем посредством почкования, не доходящего до конца, колонии, состоящие из сотен и тысяч особей. Колонии состоят из вполне одинаковых особей (мономорфные колонии) или же из особей, имеющих различное строение и выполняющих различные функции (полиморфные колонии).

Характернейшая черта типа — наличие стрекательных клеток. Дви­жение осуществляется путем мускульных сокращений. Тип распадается па классы: Hydrozoa (гидрозои); Scyphpzoa (сцифоидные медузы); Anthozoa (коралловые полипы).

КЛАСС I. ГИДРОЗОИ (HYDROZOA)

Низший класс, состоящий большей частью из мелких форм, содержит полипов и медуз (2700 видов). В отличие от сцифомедуз и коралловых полипов полипы и медузы, принадлежащие к Hydrozoa, называются гид­роидными.

ПОДКЛАСС I. ГИДРОИДНЫЕ (HYDROIDEA)

Строение гидры (Hydra). На примере гидры можно ознакомиться со строением гидроидных полипов. Гидра — одни из наиболее просто устроенных полипов. Это маленький (около 1 см) пресноводный полип, часто встречающийся в озерах и прудах. Тело гидры в виде продолгова­того мешочка, прикрепляется к субстрату своим основанием, или подош­вой; па свободном конце тела па особом, возвышении — ротовом конусе лежит рот, окруженный венчиком из 6—12 щупалец (рис. 91, А). Вся поверхность тела, вплоть до краев ротового отверстия, покрыта эктодер­мой, состоящей из нескольких сортов клеток. Большая часть ее образо­вана цилиндрическими или кубическими эпителиальными клетками, основание которых, обращенное к мезоглее, вытягивается по направле­нию кверху и книзу (по продольной оси животного) в длинный отросток, лежащий параллельно поверхности тела (рис. 91, Г). Цитоплазма отро­стка дифференцируется в виде тончайших сократительных волоконец; отросток имеет значение мускульного. Цилиндрическая часть клетки входит в состав покровного однослойного эпителия. Эти клетки называ­ются эпителиально-мускульными. Совокупность отростков всех таких


I

клеток образует в основании эпителия слой мускульных образований, совпадающих с продольной осью тела. При их одновременном сокраще­нии тело полипа сильно укорачивается.

Между основаниями более крупных эпителиально-мускульных клеток располагаются мелкие промежуточные (интерстициальные) клетки. За их счет формируются половые и стрекательные клетки. Непосредственно под эпителием рассеяны нервные клетки звездчатой формы, которые своими отростками сообщаются между собой и образуют субэпителиаль­ное нервное сплетение. Таким образом, нервная система гидры стоит на самой низкой ступени развития, имеет рассеянный, диффузный характер (рис. 92). Впрочем, даже у гидры отмечаются два сгущения нервного сплетения — вокруг рта и на подошве.

Характерная черта кишсчнополостных — присутствие в покровах стрекательных клеток (рис. 93, А, Б). Они развиваются из промежуточ­ных клеток и содержат особую овальную стрекательную капсулу с плот­ными стенками. Капсула наполнена жидкостью, а на одном конце капсу­лы стенка ее впячена внутрь в виде очень тонкого, но полого отростка, который закручивается в капсуле в спирально завитую стрекательную нить. Стрекательные клетки служат гидре орудием нападения и защиты.



•ю-

•В

 


Рис. 91. Гидра Hydra oligactis. A— продольный разрез; Б — поперечный разрез; В — участок среза при большом увеличении; Г — эктодермальная эпителиально-мускульная

клетка (А — из Бриана, Б — по Полянскому, В — по Кестнеру, Г — по Роскину): / — эктодерма, 2 — энтодерма, 3 — базальная мембрана, 4 — гастральная полость, 5 —эктодер-мальные эпителиально-мускульные клетки, 6 — интерстициальные клетки, 7 — стрекательные клетки, 8 — нервные клетки, 9 — энтодермальные " эпителиально-мускульные клетки, 10 — железистые клет­ки, // — ротовое отверстие, 12 — ротовой конус, 13 — почка, 14 — подошва, 15 — яйцеклетка, /6 —

мужские гонады

. 117


Рис. 92. Схема распо­ложения нервных кле­ток в теле гидры (по Гессе)

На наружной поверхности клетки имеется тонкий чувствительный воло­сок— книдоциль. Изучение стрекательных клеток с помощью электрон­ного микроскопа показало значительную сложность строения книдоциля (рис. 93, В). Он состоит из длинного жгутика, окруженного 18—22 тон­кими пальцевидными выростами цитоплазмы — микроворсинками. По строению жгутик книдоциль очень сходен со жгути­ками и ресничками простейших, но в отличие от них неподвижен. При прикосновении добычи или врага к жгутику последний отклоняется и задевает одну или несколько микроворсинок, что приводит к возбуждению стрекательной клетки. При этом стре­кательная капсула выбрасывает выворачивающую­ся из нее наружу упругую нить, которая распрям­ляется, как стрела. Нить наподобие гарпуна усаже­на обращенными назад шипиками, а в основании несет более крупные шипы. Уколы нити ядовиты и могут парализовать мелких животных. После вы­брасывания нити стрекательная клетка погибает. У гидры имеется несколько категорий капсул, функции которых различны. Рассмотренные круп­ные капсулы, служащие для пробивания покровов и поражения добычи, называются пенетрантами (рис. 93). Значительно более мелкие — вольвенты имеют короткие спирально закрученные нити, кото­рые обвиваются вокруг различных выступов (щети­нок, волосков и т. п.) на теле добычи и таким путем удерживают ее. Наконец, вытянутые стрекательные капсулы — глютинанты — приклеиваются к телу добычи длинными липкими нитями.

Энтодерма выстилает всю гастраль-ную (пищеварительную) полость вплоть до краев рта. В состав энтодер­мы входит также несколько кате-


 

Рис. 93. Стрекательные клетки. А — в покоящемся состоянии;

Б — с выброшенной стрекательной нитью (по Кюну); В —

строение книдоциля (по Слаутербаку):




<== предыдущая лекция | следующая лекция ==>
 | 

Дата добавления: 2015-04-16; просмотров: 402. Нарушение авторских прав; Мы поможем в написании вашей работы!



Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...

Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...

Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...

Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

Именные части речи, их общие и отличительные признаки Именные части речи в русском языке — это имя существительное, имя прилагательное, имя числительное, местоимение...

Интуитивное мышление Мышление — это пси­хический процесс, обеспечивающий познание сущности предме­тов и явлений и самого субъекта...

Объект, субъект, предмет, цели и задачи управления персоналом Социальная система организации делится на две основные подсистемы: управляющую и управляемую...

САНИТАРНО-МИКРОБИОЛОГИЧЕСКОЕ ИССЛЕДОВАНИЕ ВОДЫ, ВОЗДУХА И ПОЧВЫ Цель занятия.Ознакомить студентов с основными методами и показателями...

Меры безопасности при обращении с оружием и боеприпасами 64. Получение (сдача) оружия и боеприпасов для проведения стрельб осуществляется в установленном порядке[1]. 65. Безопасность при проведении стрельб обеспечивается...

Весы настольные циферблатные Весы настольные циферблатные РН-10Ц13 (рис.3.1) выпускаются с наибольшими пределами взвешивания 2...

Studopedia.info - Студопедия - 2014-2024 год . (0.011 сек.) русская версия | украинская версия